scholarly journals Electric Vehicle Integration into Road Transportation, Intelligent Transportation, and Electric Power Systems: An Abu Dhabi Case Study

Smart Cities ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1039-1057
Author(s):  
Amro M. Farid ◽  
Asha Viswanath ◽  
Reem Al-Junaibi ◽  
Deema Allan ◽  
Thomas J. T. Van der Van der Wardt

Recently, electric vehicles (EV) have gained much attention as a potential enabling technology to support CO2 emissions reduction targets. Relative to their internal combustion vehicle counterparts, EVs consume less energy per unit distance, and add the benefit of not emitting any carbon dioxide in operation and instead shift their emissions to the existing local fleet of power generation. However, the true success of EVs depends on their successful integration with the supporting infrastructure systems. Building upon the recently published methodology for the same purpose, this paper presents a “systems-of-systems” case study assessing the impacts of EVs on these three systems in the context of Abu Dhabi. For the physical transportation system, a microscopic discrete-time traffic operations simulator is used to predict the kinematic state of the EV fleet over the duration of one day. For the impact on the intelligent transportation system (ITS), the integration of EVs into Abu Dhabi is studied using a multi-domain matrix (MDM) of the Abu Dhabi Department of Transportation ITS. Finally, for the impact on the electric power system, the EV traffic flow patterns from the CMS are used to calculate the timing and magnitude of charging loads. The paper concludes with the need for an intelligent transportation-energy system (ITES) which would coordinate traffic and energy management functionality.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 461
Author(s):  
Isabel Azevedo ◽  
Vítor Leal

This paper proposes the use of decomposition analysis to assess the effect of local energy-related actions towards climate change mitigation, and thus improve policy evaluation and planning at the local level. The assessment of the impact of local actions has been a challenge, even from a strictly technical perspective. This happens because the total change observed is the result of multiple factors influencing local energy-related greenhouse gas (GHG) emissions, many of them not even influenced by local authorities. A methodology was developed, based on a recently developed decomposition model, that disaggregates the total observed changes in the local energy system into multiple causes/effects (including local socio-economic evolution, technology evolution, higher-level governance frame and local actions). The proposed methodology, including the quantification of the specific effect associated with local actions, is demonstrated with the case study of the municipality of Malmö (Sweden) in the timeframe between 1990 and 2015.


A case study serves in making the picture clearer to the reader. This case study covers an expansion in the generation area of a real life electric power system.


2017 ◽  
Vol 7 (4) ◽  
pp. 19-31 ◽  
Author(s):  
Ahmed Bin Touq ◽  
Anthony Ijeh

The study explores the impact of participatory systems on information quality using Abu Dhabi as a case study. Participatory systems are used for deciding social change to affect residents and citizens positively. The case study research method was used to examine information quality in a participatory system. Content of the participatory system was assessed for information quality and it was found to support theoretical claims that Abu Dhabi residents and citizens participate in building sustainable competition using participatory systems. The limitations of the study are found in its focus on a single application, the app CityGuard. Through examining the use of CityGuard, specific issues were recognized which allowed the definition of steps on how its use could impact social change more positively. This paper presents findings from the use of CityGuard as a public participatory tool.


2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
D. Myers ◽  
P. Grace ◽  
E. Lopez Calva ◽  
X. Zhang

This paper explores the impact of water conservation and rainwater harvesting practices implemented at the site or district scale on the infrastructure, energy and water cycles of their larger urban systems. A case study is presented of a conceptual development in a Southeast Asian climate. Two technologies are examined: water-efficient fixtures and appliances and rainwater harvesting and beneficial use. Practices to reduce water consumption at the site or district scale have implications in the larger system, ranging from reductions in water that has to be treated and distributed, reductions in wastewater that has to be collected and treated, and reductions in energy consumed. Similarly, using rainwater for irrigation will reduce the amount of potable water demand, and will have system energy implications. The paper considers performance criteria for the entire water-energy system, including peak runoff, pollutant loads, energy and carbon footprints.


2019 ◽  
Vol 116 (51) ◽  
pp. 26078-26084 ◽  
Author(s):  
Robert A. Holland ◽  
Kate Scott ◽  
Paolo Agnolucci ◽  
Chrysanthi Rapti ◽  
Felix Eigenbrod ◽  
...  

Given its total contribution to greenhouse gas emissions, the global electric power sector will be required to undergo a fundamental transformation over the next decades to limit anthropogenic climate change to below 2 °C. Implications for biodiversity of projected structural changes in the global electric power sector are rarely considered beyond those explicitly linked to climate change. This study uses a spatially explicit consumption-based accounting framework to examine the impact of demand for electric power on terrestrial vertebrate biodiversity globally. We demonstrate that the biodiversity footprint of the electric power sector is primarily within the territory where final demand for electric power resides, although there are substantial regional differences, with Europe displacing its biodiversity threat along international supply chains. The relationship between size of individual components of the electric power sector and threat to biodiversity indicates that a shift to nonfossil sources, such as solar and wind, could reduce pressures on biodiversity both within the territory where demand for power resides and along international supply chains. However, given the current levels of deployment of nonfossil sources of power, there is considerable uncertainty as to how the impacts of structural changes in the global electric power system will scale. Given the strong territorial link between demand and associated biodiversity impacts, development of strong national governance around the electric power sector represents a clear route to mitigate threats to biodiversity associated with efforts to decarbonize society over the coming century.


Sign in / Sign up

Export Citation Format

Share Document