scholarly journals On sharp inequality of Kolmogorov type for functions of low smoothness from the class $L_1^r(T)$

2021 ◽  
Vol 15 ◽  
pp. 101
Author(s):  
V.A. Kofanov ◽  
V.Ye. Miropolskii

We obtain new sharp inequality of Kolmogorov type for differentiable periodic functions $x \in L_1^3$.


2013 ◽  
Vol 21 ◽  
pp. 61
Author(s):  
S.B. Vakarchuk ◽  
M.B. Vakarchuk

The sharp inequality of Kolmogorov type has been obtained in the space $\mathfrak{B}(U_2)$ for functions of two complex variables analytic in the unit bicircle.



2012 ◽  
Vol 20 ◽  
pp. 82
Author(s):  
S.B. Vakarchuk ◽  
M.B. Vakarchuk

Sharp inequality of Kolmogorov type is obtained in the Bergman space $B_2$ for functions being analytic in the unit disk. The application of this inequality to problems of the theory of approximation in the complex plane is presented too.



2015 ◽  
Vol 23 ◽  
pp. 3
Author(s):  
T.R. Bіkkuzhyna ◽  
V.A. Kofanov

We obtained sharp inequalities of Kolmogorov type for non-periodic functions on the real domain. The obtained results were applied to solve some extremum problems for non-periodic functions and splines on the real domain.



2020 ◽  
Vol 28 (1) ◽  
pp. 3
Author(s):  
V.A. Kofanov ◽  
I.V. Popovich

For any $p\in (0, \infty],$ $\omega > 0,$ $d \ge 2 \omega,$ we obtain the sharp inequality of Nagy type$$\|x_{\pm}\|_\infty \le\frac{\|(\varphi+c)_{\pm}\|_\infty}{\|\varphi+c\|_{L_p(I_{2\omega})}} \left\|x \right\|_{L_{p} \left(I_d  \right)}$$on the set $S_{\varphi}(\omega)$ of $d$-periodic functions $x$ having zeros with given the sine-shaped $2\omega$-periodiccomparison function $\varphi$, where $c\in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$ is such that$$ \|x_{+}\|_\infty \cdot\|x_{-}\|^{-1}_\infty = \|(\varphi+c)_{+}\|_\infty \cdot\|(\varphi+c)_{-}\|^{-1}_\infty .$$In particular, we obtain such type inequalities on the Sobolev sets of periodic functions and on the spaces of trigonometric polynomials and polynomial splines with given quotient of the norms $\|x_{+}\|_\infty / \|x_-\|_\infty$.



1984 ◽  
Vol 35 (3) ◽  
pp. 193-199
Author(s):  
V. N. Konovalov


2019 ◽  
Vol 20 (2) ◽  
pp. 353-370
Author(s):  
Mirgand Shabozovich Shabozov ◽  
Mukhiddin Otasevic Akobirshoev


2021 ◽  
Vol 16 ◽  
pp. 3
Author(s):  
V.F. Babenko ◽  
T.V. Matveeva

We prove new sharp inequality of Kolmogorov type that estimates the norm of mixed fractional Marchaud derivative of n-variable function by C-norm of this function and its norms in Lipschitz spaces.



2013 ◽  
Vol 56 (1) ◽  
Author(s):  
Vladimir E. Zakharov ◽  
Vyacheslav I. Karas'




Sign in / Sign up

Export Citation Format

Share Document