Sharp Nagy type inequalities for the classes of functions with given quotient of the uniform norms of positive and negative parts of a function
For any $p\in (0, \infty],$ $\omega > 0,$ $d \ge 2 \omega,$ we obtain the sharp inequality of Nagy type$$\|x_{\pm}\|_\infty \le\frac{\|(\varphi+c)_{\pm}\|_\infty}{\|\varphi+c\|_{L_p(I_{2\omega})}} \left\|x \right\|_{L_{p} \left(I_d \right)}$$on the set $S_{\varphi}(\omega)$ of $d$-periodic functions $x$ having zeros with given the sine-shaped $2\omega$-periodiccomparison function $\varphi$, where $c\in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$ is such that$$ \|x_{+}\|_\infty \cdot\|x_{-}\|^{-1}_\infty = \|(\varphi+c)_{+}\|_\infty \cdot\|(\varphi+c)_{-}\|^{-1}_\infty .$$In particular, we obtain such type inequalities on the Sobolev sets of periodic functions and on the spaces of trigonometric polynomials and polynomial splines with given quotient of the norms $\|x_{+}\|_\infty / \|x_-\|_\infty$.