scholarly journals Sharp Nagy type inequalities for the classes of functions with given quotient of the uniform norms of positive and negative parts of a function

2020 ◽  
Vol 28 (1) ◽  
pp. 3
Author(s):  
V.A. Kofanov ◽  
I.V. Popovich

For any $p\in (0, \infty],$ $\omega > 0,$ $d \ge 2 \omega,$ we obtain the sharp inequality of Nagy type$$\|x_{\pm}\|_\infty \le\frac{\|(\varphi+c)_{\pm}\|_\infty}{\|\varphi+c\|_{L_p(I_{2\omega})}} \left\|x \right\|_{L_{p} \left(I_d  \right)}$$on the set $S_{\varphi}(\omega)$ of $d$-periodic functions $x$ having zeros with given the sine-shaped $2\omega$-periodiccomparison function $\varphi$, where $c\in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$ is such that$$ \|x_{+}\|_\infty \cdot\|x_{-}\|^{-1}_\infty = \|(\varphi+c)_{+}\|_\infty \cdot\|(\varphi+c)_{-}\|^{-1}_\infty .$$In particular, we obtain such type inequalities on the Sobolev sets of periodic functions and on the spaces of trigonometric polynomials and polynomial splines with given quotient of the norms $\|x_{+}\|_\infty / \|x_-\|_\infty$.


2015 ◽  
Vol 31 (4) ◽  
pp. 543-576 ◽  
Author(s):  
Lutz Kämmerer ◽  
Daniel Potts ◽  
Toni Volkmer




2021 ◽  
Vol 13 (1) ◽  
pp. 68-80
Author(s):  
A.S. Serdyuk ◽  
U.Z. Hrabova

The Zygmund sums of a function $f\in L_{1}$ are trigonometric polynomials of the form $$Z^{s}_{n-1}(f;t):=\frac{a_{0}}{2}+\sum_{k=1}^{n-1}\Big(1-\big(\frac{k}{n}\big)^{s}\Big) \big(a_{k}(f)\cos kt+b_{k}(f)\sin kt\big), s>0,$$ where $a_{k}(f)$ and $b_{k}(f)$ are the Fourier coefficients of $f$. We establish the exact-order estimates of uniform approximations by the Zygmund sums $Z^{s}_{n-1}$ of $2\pi$-periodic continuous functions from the classes $C^{\psi}_{\beta,p}$. These classes are defined by the convolutions of functions from the unit ball in the space $L_{p}$, $1\leq p<\infty$, with generating fixed kernels $$\Psi_{\beta}(t)\sim\sum_{k=1}^{\infty}\psi(k)\cos\left(kt+\frac{\beta\pi}{2}\right), \Psi_{\beta}\in L_{p'}, \beta\in \mathbb{R}, \frac1p+\frac{1}{p'}=1.$$ We additionally assume that the product $\psi(k)k^{s+1/p}$ is generally monotonically increasing with the rate of some power function, and, besides, for $1< p<\infty$ it holds that $\sum_{k=n}^{\infty}\psi^{p'}(k)k^{p'-2}<\infty$, and for $p=1$ the following condition $\sum_{k=n}^{\infty}\psi(k)<\infty$ is true. It is shown, that under these conditions Zygmund sums $Z^{s}_{n-1}$ and Fejér sums $\sigma_{n-1}=Z^{1}_{n-1}$ realize the order of the best uniform approximations by trigonometric polynomials of these classes, namely for $1<p<\infty$ $${E}_{n}(C^{\psi}_{\beta,p})_{C}\asymp{\cal E}\left(C^{\psi}_{\beta,p}; Z_{n-1}^{s}\right)_{C}\asymp\Big(\sum_{k=n}^{\infty}\psi^{p'}(k)k^{p'-2}\Big)^{1/p'}, \ \frac{1}{p}+\frac{1}{p'}=1,$$ and for $p=1$ $$ {E}_{n}(C^{\psi}_{\beta,1})_{C}\asymp{\cal E}\left(C^{\psi}_{\beta,1}; Z_{n-1}^{s}\right)_{C}\asymp {\left\{{\begin{array}{l l} \sum\limits_{k=n}^{\infty}\psi(k), & \cos \frac{\beta\pi}{2}\neq 0,\\ \psi(n)n, &\cos \frac{\beta\pi}{2}= 0, \end{array}} \right.} $$ where $${E}_{n}(C^{\psi}_{\beta,p})_{C}:=\sup_{f\in C^{\psi}_{\beta,p}}\inf\limits_{t_{n-1}\in\mathcal{T}_{2n-1}}\|f(\cdot)-t_{n-1}(\cdot)\|_{C}, $$ and $\mathcal{T}_{2n-1}$ is the subspace of trigonometric polynomials $t_{n-1}$ of order $n-1$ with real coefficients, $${\cal E}\left(C^{\psi}_{\beta,p}; Z_{n-1}^{s}\right)_{C}:=\mathop{\sup}\limits_{f\in C^{\psi}_{\beta,p}}\|f(\cdot)-Z^{s}_{n-1}(f;\cdot)\|_{C}.$$





Sign in / Sign up

Export Citation Format

Share Document