particle distributions
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 67)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Vol 924 (2) ◽  
pp. 90
Author(s):  
Haocheng Zhang ◽  
Xiaocan Li ◽  
Dimitrios Giannios ◽  
Fan Guo ◽  
Hannes Thiersen ◽  
...  

Abstract It is commonly believed that blazar jets are relativistic magnetized plasma outflows from supermassive black holes. One key question is how the jets dissipate magnetic energy to accelerate particles and drive powerful multiwavelength flares. Relativistic magnetic reconnection has been proposed as the primary plasma physical process in the blazar emission region. Recent numerical simulations have shown strong acceleration of nonthermal particles that may lead to multiwavelength flares. Nevertheless, previous works have not directly evaluated γ-ray signatures from first-principles simulations. In this paper, we employ combined particle-in-cell and polarized radiation transfer simulations to study multiwavelength radiation and optical polarization signatures under the leptonic scenario from relativistic magnetic reconnection. We find harder-when-brighter trends in optical and Fermi-LAT γ-ray bands as well as closely correlated optical and γ-ray flares. The swings in optical polarization angle are also accompanied by γ-ray flares with trivial time delays. Intriguingly, we find highly variable synchrotron self-Compton signatures due to inhomogeneous particle distributions during plasmoid mergers. This feature may result in fast γ-ray flares or orphan γ-ray flares under the leptonic scenario, complementary to the frequently considered minijet scenario. It may also imply neutrino emission with low secondary synchrotron flux under the hadronic scenario, if plasmoid mergers can accelerate protons to very high energy.


2021 ◽  
Author(s):  
Lennart Bock ◽  
Dominik Brida ◽  
Michael Faitsch ◽  
Klaus Schmid ◽  
Tilmann Lunt

Abstract In this paper the influence of toroidally asymmetric wall features on plasma solutions for ASDEX Upgrade is investigated by using the 3D scrape-off-layer simulation code EMC3-EIRENE. A comparison of simulation results in a 2D case with a toroidally symmetric first wall and divertor and a 3D case that differs from the 2D setup by including the 3D structure of the poloidal rib-limiters on the low field side of ASDEX Upgrade, highlights notable differences in the main chamber neutral particle distributions, ionisation sources and plasma flow patterns. Both neutral particle distribution and ionisation sources extend poloidally further upwards at the outer mid-plane in the 3D case and the plasma flow is globally influenced by the 3D wall features. Both simulations are conducted with identical input parameters to isolate the influence of wall geometry from other factors. By analysing the transport of neutrals from different poloidal locations it was possible to explain the observed discrepancies by different transport paths for recycled neutrals from the divertor region, only accessible in the 3D version of the wall geometry. Together with observed differences in fall-off lengths for plasma flow and electron temperature at the outer mid-plane, presented results are of key importance for interpreting global impurity migration experiments.


2021 ◽  
Vol 922 (2) ◽  
pp. 200
Author(s):  
J. P. van den Berg ◽  
N. E. Engelbrecht ◽  
N. Wijsen ◽  
R. D. Strauss

Abstract Particle drifts perpendicular to the background magnetic field have been proposed by some authors as an explanation for the very efficient perpendicular transport of solar energetic particles (SEPs). This process, however, competes with perpendicular diffusion caused by magnetic turbulence, which can also disrupt the drift patterns and reduce the magnitude of drift effects. The latter phenomenon is well known in cosmic-ray studies, but not yet considered in SEP models. Additionally, SEP models that do not include drifts, especially for electrons, use turbulent drift reduction as a justification of this omission, without critically evaluating or testing this assumption. This article presents the first theoretical step for a theory of drift suppression in SEP transport. This is done by deriving the turbulence-dependent drift reduction function with a pitch-angle dependence, as is applicable for anisotropic particle distributions, and by investigating to what extent drifts will be reduced in the inner heliosphere for realistic turbulence conditions and different pitch-angle dependencies of the perpendicular diffusion coefficient. The influence of the derived turbulent drift reduction factors on the transport of SEPs are tested, using a state-of-the-art SEP transport code, for several expressions of theoretically derived perpendicular diffusion coefficients. It is found, for realistic turbulence conditions in the inner heliosphere, that cross-field diffusion will have the largest influence on the perpendicular transport of SEPs, as opposed to particle drifts.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1112-1122
Author(s):  
Markus Böttcher

Reinhard Schlickeiser has made groundbreaking contributions to various aspects of blazar physics, including diffusive shock acceleration, the theory of synchrotron radiation, the production of gamma-rays through Compton scattering in various astrophysical sources, etc. This paper, describing the development of a self-consistent shock-in-jet model for blazars with a synchrotron mirror feature, is therefore an appropriate contribution to a Special Issue in honor of Reinhard Schlickeiser’s 70th birthday. The model is based on our previous development of a self-consistent shock-in-jet model with relativistic thermal and non-thermal particle distributions evaluated via Monte-Carlo simulations of diffusive shock acceleration, and time-dependent radiative transport. This model has been very successful in modeling spectral variability patterns of several blazars, but has difficulties describing orphan flares, i.e., high-energy flares without a significant counterpart in the low-frequency (synchrotron) radiation component. As a solution, this paper investigates the possibility of a synchrotron mirror component within the shock-in-jet model. It is demonstrated that orphan flares result naturally in this scenario. The model’s applicability to a recently observed orphan gamma-ray flare in the blazar 3C279 is discussed and it is found that only orphan flares with mild (≲ a factor of 2–3) enhancements of the Compton dominance can be reproduced in a synchrotron-mirror scenario, if no additional parameter changes are invoked.


Author(s):  
Tassilo Kugelstadt ◽  
Jan Bender ◽  
José Antonio Fernández-Fernández ◽  
Stefan Rhys Jeske ◽  
Fabian Löschner ◽  
...  

We develop a new operator splitting formulation for the simulation of corotated linearly elastic solids with Smoothed Particle Hydrodynamics (SPH). Based on the technique of Kugelstadt et al. [2018] originally developed for the Finite Element Method (FEM), we split the elastic energy into two separate terms corresponding to stretching and volume conservation, and based on this principle, we design a splitting scheme compatible with SPH. The operator splitting scheme enables us to treat the two terms separately, and because the stretching forces lead to a stiffness matrix that is constant in time, we are able to prefactor the system matrix for the implicit integration step. Solid-solid contact and fluid-solid interaction is achieved through a unified pressure solve. We demonstrate more than an order of magnitude improvement in computation time compared to a state-of-the-art SPH simulator for elastic solids. We further improve the stability and reliability of the simulation through several additional contributions. We introduce a new implicit penalty mechanism that suppresses zero-energy modes inherent in the SPH formulation for elastic solids, and present a new, physics-inspired sampling algorithm for generating high-quality particle distributions for the rest shape of an elastic solid. We finally also devise an efficient method for interpolating vertex positions of a high-resolution surface mesh based on the SPH particle positions for use in high-fidelity visualization.


Author(s):  
K Chatterjee ◽  
S Markoff ◽  
J Neilsen ◽  
Z Younsi ◽  
G Witzel ◽  
...  

Abstract Sgr A* exhibits regular variability in its multiwavelength emission, including daily X-ray flares and roughly continuous near-infrared (NIR) flickering. The origin of this variability is still ambiguous since both inverse Compton and synchrotron emission are possible radiative mechanisms. The underlying particle distributions are also not well constrained, particularly the non-thermal contribution. In this work, we employ the GPU-accelerated general relativistic magnetohydrodynamics (GRMHD) code H-AMR to perform a study of flare flux distributions, including the effect of particle acceleration for the first time in high-resolution 3D simulations of Sgr A*. For the particle acceleration, we use the general relativistic ray-tracing (GRRT) code BHOSS to perform the radiative transfer, assuming a hybrid thermal+non-thermal electron energy distribution. We extract ∼60 hr lightcurves in the sub-millimetre, NIR and X-ray wavebands, and compare the power spectra and the cumulative flux distributions of the lightcurves to statistical descriptions for Sgr A* flares. Our results indicate that non-thermal populations of electrons arising from turbulence-driven reconnection in weakly magnetised accretion flows lead to moderate NIR and X-ray flares and reasonably describe the X-ray flux distribution while fulfilling multiwavelength flux constraints. These models exhibit high rms per cent amplitudes, $\gtrsim 150{{\ \rm per\ cent}}$ both in the NIR and the X-rays, with changes in the accretion rate driving the 230 GHz flux variability, in agreement with Sgr A* observations.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1041
Author(s):  
Ekkawit Wangkanklang ◽  
Yoshikazu Koike

In this paper we present a system for monitoring progress in a mixing and grinding machine via the signal processing of sound emitted by the machine. Our low-cost, low-maintenance system may improve automatic machines and the industrial Internet of Things. We used the Pumpkin Pi board and Raspberry Pi, which are low-cost hardware devices, for recording sounds via a microphone and analyzing the sound signals, respectively. Sound data obtained at regular intervals were compressed. The estimated power spectral density (PSD) values calculated from the sound signals were related to the status of the material during mixing and grinding. We examined the correlation between the PSD obtained by the STFT and the particle distributions in detail. We found that PSD values had both repeatability and a strong relation with the particle distributions that were created by the mixing and grinding machine ,although the relation between the PSD and the particle size distributions was not merely linear. We used the PSD values to estimate the progress remotely during the operation of the machine.


2021 ◽  
Author(s):  
Yu Wang ◽  
Tonglu Li ◽  
Chenxi Zhao ◽  
Xiaokun Hou ◽  
Ping Li ◽  
...  

Abstract Compacted loess soil is used as a geo-material in many engineering projects such as building foundations and highway embankments. Water infiltration characteristics and post settlement of the compacted loess in large construction projects of Northwest China have received increasing attention from researchers and investors. These behaviors are closely related to the soil water characteristics. This study aims to investigate the soil water characteristic curves (SWCCs) of compacted loess soil with different dry densities and to reveal the responsible micro-mechanisms for soil water characteristics. Loess soil collected from the new district of Yan'an City, China, is prepared into five dry density groups. The SWCC of each group in the suction range of 0–100,000 kPa is measured using the filter paper method (FPM). Two-dimensional (2D) images and the pore size distribution (PSD) curves of the specimens are tested by scanning electron microscopy (SEM) and the mercury pressure method (MIP), respectively. The results of this study highlight that the compaction behavior mainly influences the pores with a radius ( r ) in the range of 1–10 μm, and has no influence on the pores of r < 0.5 μm. The particle shapes among the five dry densities groups are similar. The characteristics of the PSD curves of the compacted loess soil correspond well to the SWCCs. The suction of the SWCCs increases with increasing dry density in the lower suction range of 0–100 kPa. In contrast, suction among the five dry density groups is almost identical in the suction range exceeding 100 kPa. The results of the study are helpful to understand the SWCC and microstructure characteristics of compacted loess with different dry densities.


Sign in / Sign up

Export Citation Format

Share Document