A Korovkin type approximation theorem in statistical sense

2006 ◽  
Vol 43 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Esra Erkuş ◽  
Oktay Duman

In this study, using the concept of A-statistical convergence we investigate a Korovkin type approximation result for a sequence of positive linear operators defined on the space of all continuous real valued functions on any compact subset of the real m-dimensional space.

2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Fadime Dirik ◽  
Kamil Demirci

AbstractOur primary interest in the present paper is to prove a Korovkintype approximation theorem for sequences of positive linear operators defined on the space of all real valued n-variate B-continuous functions on a compact subset of the real n-dimensional space via statistical convergence. Also, we display an example such that our method of convergence is stronger than the usual convergence.


2011 ◽  
Vol 48 (4) ◽  
pp. 475-488 ◽  
Author(s):  
Sevda Karakuş ◽  
Kamil Demirci

In this paper, using the concept of statistical σ-convergence which is stronger than the statistical convergence, we obtain a statistical σ-approximation theorem for sequences of positive linear operators defined on the space of all real valued B-continuous functions on a compact subset of the real line. Then, we construct an example such that our new approximation result works but its classical and statistical cases do not work. Also we compute the rate of statistical σ-convergence of sequence of positive linear operators.


Author(s):  
Selin Çınar

In this paper, we introduce the concept of triangular A-statistical relative convergence for double sequences of functions defined on a compactsubset of the real two-dimensional space. Based upon this new convergencemethod, we prove Korovkin-type approximation theorem. Finally, we give some further developments.


2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3749-3760 ◽  
Author(s):  
Ali Karaisa ◽  
Uğur Kadak

Upon prior investigation on statistical convergence of fuzzy sequences, we study the notion of pointwise ??-statistical convergence of fuzzy mappings of order ?. Also, we establish the concept of strongly ??-summable sequences of fuzzy mappings and investigate some inclusion relations. Further, we get an analogue of Korovkin-type approximation theorem for fuzzy positive linear operators with respect to ??-statistical convergence. Lastly, we apply fuzzy Bernstein operator to construct an example in support of our result.


2019 ◽  
Vol 38 (7) ◽  
pp. 69-83
Author(s):  
Ayten Esi ◽  
Mustafa Kemal Ozdemir ◽  
Nagarajan Subramanian

We obtain a Korovkin-type approximation theorem for Bernstein Stancu polynomials of rough statistical convergence of triple sequences of positive linear operators of three variables from $H_{\omega}\left( K\right) $ to $C_{B}\left( K\right) $, where $K=[0,\infty)\times\lbrack0,\infty )\times\lbrack0,\infty)$ and $\omega$ is non-negative increasing function on $K$.


2010 ◽  
Vol 47 (3) ◽  
pp. 321-332
Author(s):  
Fadime Dirik ◽  
Kamil Demirci

In this study, using the concept of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}-statistical convergence for sequence of infinite matrices \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document} = (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}i ) with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}i = ( bnk ( i )) we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on C * which is the space of all 2π-periodic and continuous functions on ℝ, the set of all real numbers. Also we study the rates of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}-statistical convergence of approximating positive linear operators.


2012 ◽  
Vol 62 (2) ◽  
Author(s):  
Sevda Karakuş ◽  
Kami̇l Demi̇rci̇

AbstractThe aim of this paper is to present a Korovkin-type approximation theorem on the space of all continuous real valued functions on any compact subset of the real two-dimensional space by using a A-summation process. We also study the rates of convergence of positive linear operators with the help of the modulus of continuity.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Abdullah Alotaibi ◽  
M. Mursaleen ◽  
S. A. Mohiuddine

We prove a Korovkin type approximation theorem for a function of two variables by using the notion of statistical summability(C,1,1). We also study the rate of statistical summability(C,1,1)of positive linear operators. Finally we construct an example to show that our result is stronger than those previously proved for Pringsheim's convergence and statistical convergence.


Sign in / Sign up

Export Citation Format

Share Document