scholarly journals Range extension of dendrobatid frog Colostethus ruthveni Kaplan, 1997 (Anura: Dendrobatidae) in the Sierra Nevada de Santa Marta, Colombia

Check List ◽  
2014 ◽  
Vol 10 (3) ◽  
pp. 674-676
Author(s):  
Hernán Darío Granda-Rodríguez ◽  
Liliana Patricia Saboyá-Acosta ◽  
Adolfo del Portillo-Mozo ◽  
Juan Manuel Renjifo
Tectonics ◽  
2002 ◽  
Vol 21 (1) ◽  
pp. 2-1-2-10 ◽  
Author(s):  
Benjamin E. Surpless ◽  
Daniel F. Stockli ◽  
Trevor A. Dumitru ◽  
Elizabeth L. Miller

Geosphere ◽  
2021 ◽  
Author(s):  
Michael C. Say ◽  
Andrew V. Zuza

The spatial distribution and kinematics of intracontinental deformation provide insight into the dominant mode of continental tectonics: rigid-body motion versus continuum flow. The discrete San Andreas fault defines the western North America plate boundary, but transtensional deformation is distributed hundreds of kilometers eastward across the Walker Lane–Basin and Range provinces. In particular, distributed Basin and Range extension has been encroaching westward onto the relatively stable Sierra Nevada block since the Miocene, but the timing and style of distributed deformation overprinting the stable Sierra Nevada crust remains poorly resolved. Here we bracket the timing, mag­nitude, and kinematics of overprinting Walker Lane and Basin and Range deformation in the Pine Nut Mountains, Nevada (USA), which are the western­most structural and topographic expression of the Basin and Range, with new geologic mapping and 40Ar/39Ar geochronology. Structural mapping suggests that north-striking normal faults developed during the initiation of Basin and Range extension and were later reactivated as northeast-striking oblique-slip faults following the onset of Walker Lane transtensional deformation. Conformable volcanic and sedimentary rocks, with new ages spanning ca. 14.2 Ma to 6.8 Ma, were tilted 30°–36° northwest by east-dipping normal faults. This relationship demonstrates that dip-slip deformation initiated after ca. 6.8 Ma. A retrodeformed cross section across the range suggests that the range experienced 14% extension. Subsequently, Walker Lane transtension initiated, and clockwise rotation of the Carson domain may have been accommodated by northeast-striking left-slip faults. Our work better defines strain patterns at the western extent of the Basin and Range province across an approximately 150-km-long east-west transect that reveals domains of low strain (~15%) in the Carson Range–Pine Nut Mountains and Gillis Range surrounding high-magnitude extension (~150%–180%) in the Singatse and Wassuk Ranges. There is no evidence for irregular crustal thickness variations across this same transect—either in the Mesozoic, prior to extension, or today—which suggests that strain must be accommodated differently at decoupled crustal levels to result in smooth, homogenous crustal thickness values despite the significantly heterogeneous extensional evolution. This example across an ~150 km transect demonstrates that the use of upper-crust extension estimates to constrain pre-extension crustal thickness, assuming pure shear as commonly done for the Mesozoic Nevadaplano orogenic plateau, may not be reliable.


Author(s):  
Elizabeth Cortés Castillo ◽  
Julián Andrés López Isaza
Keyword(s):  

Author(s):  
Ernesto Hernández-Romero ◽  
Reyna Rojano-Hernández ◽  
Ricardo Mendoza-Robles ◽  
José. I. Cortés- Flores ◽  
Antonio N. Turrent-Fernández

En la Sierra Nevada de Puebla, México, los huertos de durazno (Prunus persica L.) presentan problemas de producción relacionados con alta incidencia de plagas (incluye enfermedades), nutrición deficiente e inadecuado manejo de poda, que acentúan el problema de floración precoz en la mayoría de las variedades mejoradas.


2017 ◽  
Vol 94 (3) ◽  
pp. 37-61
Author(s):  
Douglas R. Littlefield

Some histories of California describe nineteenth-century efforts to reclaim the extensive swamplands and shallow lakes in the southern part of California's San Joaquin Valley – then the largest natural wetlands habitat west of the Mississippi River – as a herculean venture to tame a boggy wilderness and turn the region into an agricultural paradise. Yet an 1850s proposition for draining those marshes and lakes primarily was a scheme to improve the state's transportation. Swampland reclamation was a secondary goal. Transport around the time of statehood in 1850 was severely lacking in California. Only a handful of steamboats plied a few of the state's larger rivers, and compared to the eastern United States, roads and railroads were nearly non-existent. Few of these modes of transportation reached into the isolated San Joaquin Valley. As a result, in 1857 the California legislature granted an exclusive franchise to the Tulare Canal and Land Company (sometimes known as the Montgomery franchise, after two of the firm's founders). The company's purpose was to connect navigable canals from the southern San Joaquin Valley to the San Joaquin River, which entered from the Sierra Nevada about half way up the valley. That stream, in turn, joined with San Francisco Bay, and thus the canals would open the entire San Joaquin Valley to world-wide commerce. In exchange for building the canals, the Montgomery franchise could collect tolls for twenty years and sell half the drained swamplands (the other half was to be sold by the state). Land sales were contingent upon the Montgomery franchise reclaiming the marshes. Wetlands in the mid-nineteenth century were not viewed as they are today as fragile wildlife habitats but instead as impediments to advancing American ideals and homesteads across the continent. Moreover, marshy areas were seen as major health menaces, with the prevailing view being that swampy regions’ air carried infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document