san joaquin valley
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 88)

H-INDEX

46
(FIVE YEARS 5)

Author(s):  
Valerie Carranza ◽  
Brenna Biggs ◽  
Deanne Meyer ◽  
Amy Townsend‐Small ◽  
Ranga Rajan Thiruvenkatachari ◽  
...  

2022 ◽  
pp. 112-120
Author(s):  
Jeffrey P. Mitchell ◽  
Anil Shrestha ◽  
Lynn Epstein ◽  
Jeffery A. Dahlberg ◽  
Teamrat Ghezzehei ◽  
...  

To meet the requirements of California's Sustainable Groundwater Management Act, there is a critical need for crop production strategies with less reliance on irrigation from surface and groundwater sources. One strategy for improving agricultural water use efficiency is reducing tillage and maintaining residues on the soil surface. We evaluated high residue no-till versus standard tillage in the San Joaquin Valley with and without cover crops on the yields of two crops, garbanzo and sorghum, for 4 years. The no-till treatment had no primary or secondary tillage. Sorghum yields were similar in no-till and standard tillage systems while no-till garbanzo yields matched or exceeded those of standard tillage, depending on the year. Cover crops had no effect on crop yields. Soil cover was highest under the no-till with cover crop system, averaging 97% versus 5% for the standard tillage without cover crop system. Our results suggest that garbanzos and sorghum can be grown under no-till practices in the San Joaquin Valley without loss of yield.


2021 ◽  
Author(s):  
Valerie Carranza ◽  
Brenna Biggs ◽  
Deanne Meyer ◽  
Amy Townsend-Small ◽  
Ranga Rajan Thiruvenkatachari ◽  
...  

2021 ◽  
pp. 118254
Author(s):  
Peng Sun ◽  
Ryan N. Farley ◽  
Lijuan Li ◽  
Deepchandra Srivastava ◽  
Christopher R. Niedek ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Maha Afifi ◽  
David Obenland ◽  
Ashraf El-kereamy

Deficit irrigation (DI) is an irrigation scheduling technique that is used in grapes to improve red color development; however, results are not always satisfactory in table grapes. The red color in grapes is mainly due to the plant pigment anthocyanin. In the present study, the anthocyanin biosynthesis in Scarlet Royal grapes (Vitis vinifera L.) grown in the San Joaquin and Coachella Valleys, and subjected to two different DI strategies was investigated. The objective of this study was to identify potential regulatory factors that may lead to potential treatments to improve red color in table grapes, especially under warm climate conditions. In both locations, DI induced the expression of several genes involved in three major pathways that control the red color in table grapes: anthocyanin biosynthesis, hormone biosynthesis, and antioxidant system. DI at veraison induced anthocyanin accumulation and enhanced red color in berries at harvest time. However, anthocyanin accumulation was lower at the Coachella Valley compared to the San Joaquin Valley. The lower level of anthocyanin was associated with lower expression of critical genes involved in anthocyanin biosynthesis, such as flavonoid-3-O-glucosyltransferase (UFGT), myb-related regulatory gene (R2R3-MYB) (MYBA1), basic helix-loop-helix (bHLH) (MYCA1) and the tryptophan-aspartic acid repeat (WDR or WD40) proteins (WDR1). Further, gene expression analysis revealed the association of ABA biosynthesis gene 9-cis-epoxycarotenoid dioxygenase (NCED1), 1-aminocyclopropane-1-carboxylic acid oxidase (ACO3), and the gibberellic acid (GA) catabolic gene GA2 oxidase (GA2ox1) in the induction of anthocyanin biosynthesis. An increase in the chalcone synthase gene (CHS2) was observed in response to DI treatments in both sites. However, CHS2 expression was higher in Coachella Valley after ending the DI treatment, suggesting the involvement of environmental stress in elevating its transcripts. This data was also supported by the lower level of antioxidant gene expression and enzyme activities in the Coachella Valley compared to the San Joaquin Valley. The present data suggested that the lack of grape red coloration could partially be due to the lower level of antioxidant activities resulting in accelerated anthocyanin degradation and impaired anthocyanin biosynthesis. It seems that under challenging warmer conditions, several factors are required to optimize anthocyanin accumulation via DI, including an active antioxidant system, proper light perception, and hormonal balance.


Sign in / Sign up

Export Citation Format

Share Document