Towards a more Realistic Experimental Protocol for the Study of Atmospheric Chloride-Induced Stress Corrosion Cracking in Intermediate Level Radioactive Waste Container Materials

2014 ◽  
Vol 1665 ◽  
pp. 225-230 ◽  
Author(s):  
A.B. Cook ◽  
B. Gu ◽  
S.B. Lyon ◽  
R.C. Newman ◽  
D.L. Engelberg

ABSTRACTThe occurrence of Atmospheric chloride-Induced Stress Corrosion Cracking (AISCC) under wetted deposits of MgCl2 or sea-salt at 70°C has been investigated at various Relative Humidities (RH). The appearance of AISCC is a function of the environmental RH. At 33% RH (the deliquescence point of MgCl2), AISCC generated under MgCl2 or sea-salt deposits is of a similar appearance with regards to the number of cracks produced and average crack length. At 50% RH sea-salt seems to be more aggressive at least in terms of crack frequency. This observation may highlight the significance of carnallite (KMgCl3.6H2O) in promoting AISCC in types 304L and 316L stainless steels. The use of accelerated testing methods to validate apparent thresholds in chloride deposition density and other critical factors that influence the initiation and propagation of AISCC is briefly discussed.

Author(s):  
Andrew J. Duncan ◽  
Poh-Sang Lam ◽  
Robert L. Sindelar ◽  
Kathryn E. Metzger

Stress corrosion cracking (SCC) may occur when chloride-bearing salts and/or dust deliquesce on the external surface of the spent nuclear fuel (SNF) canister at weld residual stress regions. An SCC growth rate test is developed using instrumented bolt-load compact tension specimens (ASTM E1681) with experimental apparatus that allows an initially dried salt to deliquesce and infuse naturally to the crack front under temperature and humidity parameters relevant to the canister storage environmental conditions. Characterization of initial shakedown tests was performed to determine a more extensive matrix of testing to provide bounding conditions in which cracking will occur. The test specimen and apparatus designs were modified to enhance the interaction between the deliquescing salt and the crack front for more accurate crack growth rate measurement as a function of stress intensity factor, temperature and relative humidity which is an essential input to the determination of in service inspection frequency of SNF canisters. Testing was conducted over a range of relative humidity controlled by the guidance in ASTM E104 from ambient temperature to 50 °C with salt assemblages of ASTM simulated sea salt. After three months exposure in prototypic dried sea salt, the specimens will be examined for evidence of chloride-induced stress corrosion cracking (CISCC) and observations are reported for a range of relative humidity and temperature conditions. The above testing attempts to provide a technical basis for the boiler pressure vessel (BPV) Section XI code case N-860.


1990 ◽  
Author(s):  
P.S. Maiya ◽  
W.K. Soppet ◽  
J.Y. Park ◽  
T.F. Kassner ◽  
W.J. Shack ◽  
...  

2020 ◽  
Vol 170 ◽  
pp. 108687 ◽  
Author(s):  
Ryan Schoell ◽  
Li Xi ◽  
Yuchen Zhao ◽  
Xin Wu ◽  
Zhenzhen Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document