Amorphous Silicon Solar Cells With Silver Nanoparticles Embedded Inside the Absorber Layer

2010 ◽  
Vol 1245 ◽  
Author(s):  
Rudi Santbergen ◽  
Renrong Liang ◽  
Miro Zeman

AbstractA novel light trapping technique for solar cells is based on light scattering by metal nanoparticles through excitation of localized surface plasmons. We investigated the effect of metal nanoparticles embedded inside the absorber layer of amorphous silicon solar cells on the cell performance. The position of the particles inside the absorber layer was varied. Transmission electron microscopy images of the cell devices showed well defined silver nanoparticles, indicating that they survive the embedding procedure. The optical absorption of samples where the silver nanoparticles were embedded in thin amorphous silicon layer showed an enhancement peak around the plasmon resonance of 800 nm. The embedded particles significantly reduce the performance of the fabricated devices. We attribute this to the recombination of photogenerated charge carriers in the absorber layer induced by the presence of the silver nanoparticles. Finally we demonstrate that the fabricated solar cells exhibit tandem-like behavior where the silver nanoparticles separate the absorber layer into a top and bottom part.

2010 ◽  
Vol 74 ◽  
pp. 182-187 ◽  
Author(s):  
Ren Rong Liang ◽  
Rudi Santbergen ◽  
Miro Zeman

Light trapping in the absorber layer of thin-film solar cells is of great importance for obtaining a high photocurrent. A novel light-trapping technique is based on light scattering by metal nanoparticles through excitation of localized surface plasmons. By evaporation of thin silver layers of different thicknesses followed by thermal annealing, silver nanoparticles with different sizes were formed. We show that the plasmon resonance wavelength can be tuned by changing the embedding medium and the particle size. Furthermore, amorphous silicon solar cells with silver nanoparticles embedded between the absorber layer and the back reflector were fabricated. The effect of different sizes of the particles on the solar cell performance was studied. The performance of the solar cells was characterized by quantum efficiency and current-voltage measurements. Both the external quantum efficiency in the wavelength region of 600 to 800 nm and the current density increase as particle size increases, but remain lower than those of the reference device without particles. These results demonstrate that nanoparticles can enhance light trapping, provided that parasitic absorption in the nanoparticles is minimized. This can be achieved by better control of particle shape and size using improved fabrication techniques.


2010 ◽  
Author(s):  
Carolin Ulbrich ◽  
Marius Peters ◽  
Muhammad Tayyib ◽  
Benedikt Blaesi ◽  
Thomas Kirchartz ◽  
...  

2013 ◽  
Vol 103 (7) ◽  
pp. 073107 ◽  
Author(s):  
Wen-Hsien Huang ◽  
Jia-Min Shieh ◽  
Fu-Ming Pan ◽  
Chang-Hong Shen ◽  
Jung Y. Huang ◽  
...  

Author(s):  
C. Martella ◽  
C. Mennucci ◽  
M.C. Giordano ◽  
F. Buatier de Mongeot ◽  
P. Delli Veneri ◽  
...  

2008 ◽  
Vol 1101 ◽  
Author(s):  
Janez Krc ◽  
Andrej Campa ◽  
Stefan L. Luxembourg ◽  
Miro Zeman ◽  
Marko Topic

AbstractAdvanced light management in thin-film solar cells is important in order to improve the photo-current and, thus, to raise up the conversion efficiencies of the solar cells. In this article two types of periodic structures ¡V one-dimensional diffraction gratings and photonic crystals,are analyzed in the direction of showing their potential for improved light trapping in thin-film silicon solar cells. The anti-reflective effects and enhanced scattering at the gratings with the triangular and rectangular features are studied by means of two-dimensional optical simulations. Simulations of the complete microcrystalline solar cell incorporating the gratings at all interfaces are presented. Critical optical issues to be overcome for achieving the performances of the cells with the optimized randomly textured interfaces are pointed out. Reflectance measurements for the designed 12 layer photonic crystal stack consisting of amorphous silicon nitride and amorphous silicon layers are presented and compared with the simulations. High reflectance (up to 99 %) of the stack is measured for a broad wavelength spectrum. By means of optical simulations the potential for using a simple photonic crystal structure as a back reflector in an amorphous silicon solar cell is demonstrated.


Nano Letters ◽  
2012 ◽  
Vol 12 (5) ◽  
pp. 2187-2192 ◽  
Author(s):  
Xi Chen ◽  
Baohua Jia ◽  
Jhantu K. Saha ◽  
Boyuan Cai ◽  
Nicholas Stokes ◽  
...  

2007 ◽  
Vol 989 ◽  
Author(s):  
Rana Biswas ◽  
Dayu Zhou

AbstractA major route to improving solar cell efficiencies is by improving light trapping in solar absorber layers. Traditional light trapping schemes involve a textured metallic back reflector that also introduces losses at optical wavelengths. Here we develop alternative light trapping schemes with a-Si:H thin film solar cells, that do not use metallic components, thereby avoiding losses. We utilize low loss one-dimensional photonic crystals as distributed Bragg reflectors (DBR) at the backside of the solar cells. The DBR is constructed with alternating layers of crystalline Si and SiO2. Between the DBR and the absorber layer, there is a layer of 2D photonic crystal composed of amorphous silicon and SiO2. The 2D photonic crystal layer will diffract light at oblique angles, so that total internal reflection is formed inside the absorber layer. We have achieved enhanced light-trapping in both crystalline and amorphous silicon solar cells at near-infrared wavelengths where absorption lengths are very large. Very high absorption is achieved throughout optical wavelengths. The optical modeling is performed with a rigorous 3 dimensional scattering matrix approach where Maxwell¡¯s equations are solved in Fourier space.


Sign in / Sign up

Export Citation Format

Share Document