silicon layer
Recently Published Documents


TOTAL DOCUMENTS

718
(FIVE YEARS 98)

H-INDEX

31
(FIVE YEARS 4)

Medicina ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 1367
Author(s):  
Giuseppe Cottone ◽  
Francesco Amendola ◽  
Carlo Strada ◽  
Maria Chiara Bagnato ◽  
Roberto Brambilla ◽  
...  

Background and objectives: The skin recently became the main focus of regenerative medicine and, in this context, skin substitutes are fully entering into the plastic surgeon’s armamentarium. Among the various types of skin substitutes, dermal substitutes (DSs) are the most used. Our study aims to retrospectively compare three renowned and extremely similar DS in the management of critical lower limb wounds in the largest cohort analysis currently present in literature. Materials and Methods: We followed a strict protocol of application and evaluation of the DS for each patient and wound and, after a meticulous bias reduction process, we compared final outcomes in terms of efficacy and speed in achieving the defect coverage. Results: Among patients who did not receive a skin graft after the DS, we registered a wound healed surface of 50% for Pelnac, 52% for Integra, and 19% for Nevelia, after 30 days from the external silicon layer removal; among those who received a skin graft after the DS, we observed a significantly lower mean percentage of graft take after 7 days with Pelnac (53%) compared to Integra and Nevelia (92% and 80%, respectively). The overall percentage of wound healed surface obtained after 30 days from the external silicon sheet removal, either with or without skin graft, was 71% for Pelnac, 63% for Integra and 63% for Nevelia. We also ran a sub-group analysis only including grafted wounds with a negative microbiological test and the mean percentage of graft take was similar this time. Eventually, we assessed the influence of the wound’s “chronicity” on its healing, comparing the mean graft take only in “acute” wounds who received a skin graft and it resulted 63% for Pelnac, 91% for Integra and 75% for Nevelia. Conclusions: Integra demonstrates the highest rate of skin graft viability and the highest rate of skin graft takes after 7 days. Pelnac shows the quickest induction of secondary healing in acute wounds. Nevelia is not different from Integra and shows a superior graft take compared to Pelnac, but features the lowest secondary healing induction rate. No differences exist between the three DSs in terms of wound healing after 30 days from the skin graft or from the removal of the external silicon layer.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 547
Author(s):  
Satyendra Kumar Mishra ◽  
Rajneesh Kumar Verma ◽  
Akhilesh Kumar Mishra

A versatile sensing scheme for gas and biomolecule detection has been proposed theoretically using optimized GaP/Au/Graphene/Silicon structures. A Gallium Phosphide (GaP) prism is used as a substrate in the proposed surface plasmon resonance based sensing scheme, which is designed to be in Kretschmann configuration. The thicknesses of different constituent layers have been optimized for the maximum values of the sensitivities of the gas and bio-sensing probes. To delineate the role of the silicon layer, sensing probes without a silicon layer have also been numerically modelled and compared. The present GaP/Au/Graphene/Silicon probes possess higher values of sensitivity for the detection of gas and biomolecules compared to the conventional SPR sensing probes reported in the literature.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012006
Author(s):  
I A Eremeev ◽  
A A Koryakin ◽  
S A Kukushkin

Abstract Elastic properties of porous silicon layer of hybrid SiC/Si substrates grown by the atomic substitution method are investigated. The feature of the growth method is the formation of the macroporous silicon layer at the SiC/Si interface during growth. The elastic properties of the layer are studied using the finite element method. The biaxial modulus of the porous silicon is obtained as a function of porosity considering the different shape of the pores and presence of thin SiC boundary layer. The presence of the pores in the silicon layer adjacent to SiC results in the decrease of the elastic moduli by about 35%. However, this leads to a negligibly small change of the substrate curvature.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3985
Author(s):  
Fangyi Wu ◽  
Xiaohui Bao ◽  
Jiangbo Wang

A novel graphene-based phosphorus/silicon-containing flame retardant (GO-DOPO-V) was obtained via one-step reduction of graphene oxide (GO) with phosphorus/silicon-containing compound (DOPO-V). The Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrometer (XPS), Atomic force microscope (AFM) and Thermogravimetric analysis (TGA) measurements were used to confirm the structure and morphology. After incorporation of 2 wt% GO-DOPO-V, the maximum decreases of 28.8% in peak heat release rate and 15.6% in total heat release are achieved compared to that of pure epoxy resin (EP). Furthermore, TGA and Scanning electron microscopy (SEM) measurement showed that GO-DOPO-V significantly enhanced the thermal stability and residual char strength of EP. Thus, attributed to the barrier effect of GO and phosphorus/silicon layer formation by DOPO-V, GO-DOPO-V was a high-efficient flame retardant to improve the combustion behavior of EP nanocomposite.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7566
Author(s):  
Kaitlin M. Anagnost ◽  
Eldred Lee ◽  
Zhehui Wang ◽  
Jifeng Liu ◽  
Eric R. Fossum

Simulation results are presented that explore an innovative, new design for X-ray detection in the 20–50 keV range that is an alternative to traditional direct and indirect detection methods. Typical indirect detection using a scintillator must trade-off between absorption efficiency and spatial resolution. With a high-Z layer that down-converts incident photons on top of a silicon detector, this design has increased absorption efficiency without sacrificing spatial resolution. Simulation results elucidate the relationship between the thickness of each layer and the number of photoelectrons generated. Further, the physics behind the production of electron-hole pairs in the silicon layer is studied via a second model to shed more light on the detector’s functionality. Together, the two models provide a greater understanding of this detector and reveal the potential of this novel form of X-ray detection.


2021 ◽  
Author(s):  
Zihao Yuan ◽  
Tao Zhang ◽  
Jeroen Van Duren ◽  
Ayse K. Coskun

Abstract Lab-grown diamond heat spreaders are becoming attractive solutions compared to traditional copper heat spreaders due to their high thermal conductivity, the ability to directly bond them on silicon, and allow for an ultra-thin silicon layer. Researchers have developed various thermal models and prototypes of lab-grown diamond heat spreaders to evaluate their cooling performance and heat spreading ability. The majority of existing thermal models are built using finite-element method (FEM) based simulators such as COMSOL and ANSYS. However, such commercial simulators are computationally expensive and lead to long solution times along with large memory requirements. These limitations make commercial simulators unsuitable for evaluating numerous design alternatives or runtime scenarios for real-world high-performance processors. Because of this modeling challenge, none of the existing works have evaluated the thermal behavior of lab-grown diamond heat spreaders on real-world high-performance processors running realistic application benchmarks. Recently, we have developed a parallel compact thermal simulator, PACT, that is able to carry out fast and accurate steady-state and transient thermal simulations and can be extended to support emerging integration and cooling technologies. In this paper, we use PACT to evaluate the steady-state and transient cooling performance of lab-grown diamond heat spreaders against traditional copper heat spreaders on various real-world high-performance processors (e.g., Intel i7 6950X, IBM Power9, and PicoSoC). By using PACT with architectural performance and power simulators such as Sniper and McPAT, we are able to run transient simulations with realistic benchmarks. Simulation results show that lab-grown diamond heat spreaders achieve maximum temperature and thermal gradient reductions of up to 26.73 °C and 13.75 °C when compared to traditional copper heat spreaders, respectively. The maximum steady-state and transient simulation times of PACT for the real-world high-performance chips and realistic applications used in our experiments are 259 s and 22 min, respectively.


2021 ◽  
pp. 2100103
Author(s):  
Ruisheng Yang ◽  
Jing Lou ◽  
Fuli Zhang ◽  
Wei Zhu ◽  
Jing Xu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 19 (50) ◽  
pp. 77-83
Author(s):  
Ghasaq Ali Tomaa ◽  
Alaa Jabbar Ghazai

Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and porous silicon grain size decreased and FESEM showed a homogeneous pattern and verified the formation of uniform porous silicon.


Sign in / Sign up

Export Citation Format

Share Document