optical wavelengths
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 38)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yinming Shao ◽  
Aaron Sternbach ◽  
Brian Kim ◽  
Andrey Rikhter ◽  
Xinyi Xu ◽  
...  

Abstract Metals are canonical plasmonic media at infrared and optical wavelengths allowing one to guide and manipulate light at sub-diffractional length scales. A special form of optical waveguiding is offered by highly anisotropic crystals revealing different signs of the dielectric function along orthogonal directions. These latter types of media are classified as hyperbolic and many crystalline insulators, semiconductors and artificial metal-based metamaterials belong to that class. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. Yet this behavior remains elusive primarily because interband processes introduce extreme losses and arrest light propagation. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The unique electronic structure with touching energy bands at nodal points/lines suppresses losses and enables a hyperbolic regime at the telecommunications frequencies. The observed waveguiding in metallic ZrSiSe is a product of polaritonic hybridization between near-infrared light and long-lived nodal-line plasmons. By mapping the energy-momentum dispersion of the nodal-line hyperbolic modes in ZrSiSe we inquired into the role of additional screening associated with the surface states.


Author(s):  
Yana Kremenetska ◽  
Anatoliy Makarenko ◽  
Andrii Bereznyuk ◽  
Serhii Lazebnyi ◽  
Natalia Rudenko ◽  
...  

Non-terrestrial communication technologies will become a key component for the development of future 6th generation (6G) networks. Potentials, implementation prospects, problems and solutions for non-terrestrial telecommunications remain open areas for future research. The article discusses the use of millimeter and optical wavelengths in various configurations of multilevel space communications using LEO satellites, stratospheric platforms and unmanned repeaters. The comparison of the capacity of the Shannon channel for various multi-level scenarios of the satellite communication line is carried out. The directions of research are analyzed to ensure the continuity of communication, adaptation to weather conditions, and achieving a throughput of up to 100 Gbit/s.


2021 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Sung-Tae Kim ◽  
Ji-Seon Yoo ◽  
Min-Woo Lee ◽  
Ji-Won Jung ◽  
Jae-Hyung Jang

Near-infrared (NIR) photodetectors have interesting roles in optical fiber communications and biomedical applications. Conventional NIR photodetectors have been realized using InGaAs and Ge, of which the cut-off wavelengths exceed 1500 nm. Si-based photodetectors exhibit limited external quantum efficiency at wavelengths longer than 1000 nm. By synthesizing a CuInSe2 compound on a glass substrate, photodetectors that can detect optical wavelengths longer than 1100 nm have been realized in this study. The bandgap energies of the CuInSe2 thin films were tuned by varying the Cu/In ratio from 1.02 to 0.87. The longest cut-off wavelength (1309 nm) was obtained from a CuInSe2 thin film having a Cu/In ratio of 0.87. The responsivity of the photodiode was measured under the illumination of a 1064 nm laser light. The photo responses exhibited linear response up to 2.33 mW optical illumination and a responsivity of 0.60 A/W at −0.4 V.


Author(s):  
J.-L. Atteia ◽  
B. Cordier ◽  
J. Wei

The Sino-French space mission SVOM is mainly designed to detect, localize and follow-up Gamma-Ray Bursts and other high-energy transients. The satellite, to be launched mid 2023, embarks two wide-field gamma-ray instruments and two narrow-field telescopes operating at X-ray and optical wavelengths. It is complemented by a dedicated ground segment encompassing a set of wide-field optical cameras and two 1-m class follow-up telescopes. In this contribution, we describe the main characteristics of the mission and discuss its scientific rationale and some original GRB studies that it will enable.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012090
Author(s):  
Ghufran ameer ◽  
Nawal Kh. Gazal

Abstract Satellite images are vital tool in various applications like land use, land cover mapping and geographic information system (GIS) etc. A variety of factors involved in the process of image acquisition, introduce geometric distortions, which are removed by pre-processing of the digital imagery. Geometric correction is the process of rectification of geometric errors introduced in the imagery during the process of its acquisition. From practical point of view, the Sentinel-1 images are to be depended as source of microwave satellite imagery. While, Sentinel-2 are to be used for providing the study with the required visible-infrared images. The study includes performing different digital image processing and analysis techniques, such as: geometric and radiometric corrections, spatial merge (fusion), feature extraction with using different spatial filtering techniques and spectral classification to reveal which LULC image presents better accuracy results. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength. Because of their long wavelengths, compared to the visible and infrared, microwaves have special properties that are important for remote sensing. Longer wavelength microwave radiation can penetrate through cloud cover, haze, dust, and all but the heaviest rainfall as the longer wavelengths are not susceptible to atmospheric scattering which affects shorter optical wavelengths. This property allows detection of microwave energy under almost all weather and environmental conditions so that data can be collected at any time.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 107
Author(s):  
Victoria A. Fawcett ◽  
David M. Alexander ◽  
David J. Rosario ◽  
Lizelke Klindt

A non-negligible fraction of quasars are red at optical wavelengths, indicating (in the majority of cases) that the accretion disc is obscured by a column of dust which extinguishes the shorter-wavelength blue emission. In this paper, we summarize recent work by our group, where we find fundamental differences in the radio properties of SDSS optically-selected red quasars. We also present new analyses, using a consistent color-selected quasar parent sample matched to four radio surveys (FIRST, VLA Stripe 82, VLA COSMOS 3 GHz, and LoTSS DR1) across a frequency range 144 MHz–3 GHz and four orders of magnitude in radio flux. We show that red quasars have enhanced small-scale radio emission (∼kpc) that peaks around the radio-quiet threshold (defined as the ratio of 1.4 GHz luminosity to 6 μm luminosity) across the four radio samples. Exploring the potential mechanisms behind this enhancement, we rule out star-formation and propose either small-scale synchrotron jets, frustrated jets, or dusty winds interacting with the interstellar medium; the latter two scenarios would provide a more direct connection between opacity (dust; gas) and the production of the radio emission. In our future study, using new multi-band uGMRT data, we aim to robustly distinguish between these scenarios.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 95
Author(s):  
Maria Dainotti ◽  
Delina Levine ◽  
Nissim Fraija ◽  
Poonam Chandra

Gamma-ray Bursts (GRBs) are highly energetic events that can be observed at extremely high redshift. However, inherent bias in GRB data due to selection effects and redshift evolution can significantly skew any subsequent analysis. We correct for important variables related to the GRB emission, such as the burst duration, T90*, the prompt isotropic energy, Eiso, the rest-frame end time of the plateau emission, Ta,radio*, and its correspondent luminosity La,radio, for radio afterglow. In particular, we use the Efron–Petrosian method presented in 1992 for the correction of our variables of interest. Specifically, we correct Eiso and T90* for 80 GRBs, and La,radio and Ta,radio* for a subsample of 18 GRBs that present a plateau-like flattening in their light curve. Upon application of this method, we find strong evolution with redshift in most variables, particularly in La,radio, with values similar to those found in past and current literature in radio, X-ray and optical wavelengths, indicating that these variables are susceptible to observational bias. This analysis emphasizes the necessity of correcting observational data for evolutionary effects to obtain the intrinsic behavior of correlations to use them as discriminators among the most plausible theoretical models and as reliable cosmological tools.


2021 ◽  
Vol 21 (10) ◽  
pp. 256
Author(s):  
Ahmet Erdem ◽  
Derya Sürgit ◽  
Timothy S. Banks ◽  
Burcu Özkardeş ◽  
Edwin Budding

Abstract We present combined photometric and spectroscopic analyses of the southern binary star PU Pup. High-resolution spectra of this system were taken at the University of Canterbury Mt. John Observatory in the years 2008 and again in 2014–2015. We find the light contribution of the secondary component to be only ∼2% of the total light of the system in optical wavelengths, resulting in a single-lined spectroscopic binary. Recent TESS data revealed grazing eclipses within the light minima, though the tidal distortion, examined also from Hipparcos data, remains the predominating light curve effect. Our model shows PU Pup to have the more massive primary relatively close to filling its Roche lobe. PU Pup is thus approaching the rare ‘fast phase’ of interactive (Case B) evolution. Our adopted absolute parameters are as follows: M 1 = 4.10 (±0.20) M ⊙, M 2 = 0.65 (±0.05) M ⊙, R 1 = 6.60 (±0.30) R ⊙, R 2 = 0.90 (±0.10) R ⊙; T 1 = 11500 (±500) K, T 2 = 5000 (±350) K; photometric distance = 186 (±20) pc, age = 170 (±20) Myr. The less-massive secondary component is found to be significantly oversized and overluminous compared to standard main sequence models. We discuss this discrepancy referring to heating from the reflection effect.


Author(s):  
Victoria Anne Fawcett ◽  
David Alexander ◽  
David Rosario ◽  
Lizelke Klindt

A non-negligible fraction of quasars are red at optical wavelengths, indicating (in the vast majority of cases) that the accretion disc is obscured by a column of dust which extinguishes the shorter-wavelength blue emission. In this paper we summarise recent work by our group, where we find fundamental differences in the radio properties of SDSS optically selected red quasars. We also present new analyses, using a consistent colour-selected quasar parent sample matched to four radio surveys (FIRST, VLA Stripe 82, VLA COSMOS 3 GHz and LoTSS DR1) across a frequency range 150 MHz-3 GHz and four orders of magnitude in radio flux. We show this enhancement is driven by systems with small-scale radio emission (∼kpc) and peaks around the radio-quiet threshold (defined as the ratio of 1.4 GHz luminosity to 6μm luminosity) across the four radio samples. Exploring the potential mechanisms behind this enhancement, we rule out star-formation and propose either small-scale jets or dusty winds interacting with the interstellar medium; this will be tested in detail using new multi-band uGMRT data. Overall our results cannot be explained with a simple viewing angle hypothesis, and so may point towards red quasars representing a key phase in the evolution of galaxies.


Sign in / Sign up

Export Citation Format

Share Document