absorber layer
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 174)

H-INDEX

28
(FIVE YEARS 8)

Author(s):  
Ahmed Thabet ◽  
Safaa Abdelhady ◽  
Youssef Mobarak

<span>This paper investigates on new design of heterojunction quantum dot (HJQD) photovoltaics solar cells CdS/PbS that is based on quantum dot metallics PbS core/shell absorber layer and quantum dot window layer. It has been enhanced the performance of traditional HJQD thin film solar cells model based on quantum dot absorber layer and bulk window layer. The new design has been used sub-micro absorber layer thickness to achieve high efficiency with material reduction, low cost, and time. Metallics-semiconductor core/shell absorber layer has been succeeded for improving the optical characteristics such energy band gap and the absorption of absorber layer materials, also enhancing the performance of HJQD ITO/CdS/QDPbS/Au, sub micro thin film solar cells. Finally, it has been formulating the quantum dot (QD) metallic cores concentration effect on the absorption, energy band gap and electron-hole generation rate in absorber layers, external quantum efficiency, energy conversion efficiency, fill factor of the innovative design of HJQD cells.</span>


2022 ◽  
Vol 138 ◽  
pp. 106276
Author(s):  
Srinibasa Padhy ◽  
Vishvas Kumar ◽  
Nandu B. Chaure ◽  
Udai P. Singh
Keyword(s):  

2022 ◽  
Author(s):  
Rashi Chandel ◽  
deepak Punetha ◽  
Divya Dhawan ◽  
Neena Gupta

Abstract The perovskite absorber layer are considered highly efficient solar cell for low-cost electricity production. In this research work, an EA-substituted tin based perovskite solar cell with different hole transport material (PEDOT: PSS, Cu2O, CuI, CZTSe) have been investigated using device simulation software. The effects of absorber thickness, defect density, operating temperature, J-V characteristics, and Quantum efficiency have been considered to enhance the performance of solar cell. To confirm the feasibility and validate the study, all the simulation results were compared with reported experiment data. According to the experimental work based on (FA0.9EA0.1)0.98EDA0.01SnI3 absorber layer, maximum of 13% efficiency is achieved with PEDOT: PSS as the HTM. Whereas we have further optimized performance parameters and found the superior response (Voc=0.8851 V, Jsc=27.24 mA/cm2, FF=77.91%, and PCE=18.78%) while opted Cu2O as the hole transport material. This device structure FTO/Cu2O/(FA0.9EA0.1)0.98EDA0.01SnI3/IDL/PCBM/C60/Au provides the more efficient, reliable solution for replacing the lead-based perovskite solar cell. This study will aid researcher in a reasonable choice of materials and to predict the behavior of high performance solar cell before undergoing the fabrication process.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Qinmiao Chen ◽  
Yi Ni ◽  
Xiaoming Dou ◽  
Yamaguchi Yoshinori

The perovskite solar cell (PSC) as an emerging and promising type has been extensively studied. In this study, a model for a PSC prepared in ambient air was established by using SCAPS-1D. After that, it was further analyzed through varying the defect density of the perovskite absorber layer (Nt), the thin film thickness and energy-level matching between the electron transport layer (ETL), the perovskite absorber layer and the hole transport layer (HTL), for a better understanding of the carrier features. The Nt varied from 1.000 × 1011 to 1.000 × 1017 cm−3. The performance of the solar cell is promoted with improved Nt. When Nt is at 1.000 × 1015 cm−3, the carrier diffusion length reaches μm, and the carrier lifetime comes to 200 nm. The thickness of the absorber layer was changed from 200 to 600 nm. It is shown that the absorber layer could be prepared thinner for reducing carrier recombination when at high Nt. The thickness effect of ETL and HTL is weakened, since Nt dominates the solar cell performance. The effect of the affinity of ETL (3.4–4.3 eV) and HTL (2.0–2.7 eV), together with three energy-level matching situations “ETL(4.2)+HTL(2.5)”, “ETL(4.0)+HTL(2.2)” and “ETL(4.0)+HTL(2.5)” on the performance of the solar cell were analyzed. It was found that the HTL with valence band 0.05 eV lower than that of the perovskite absorber layer could have a blocking effect that reduced carrier recombination. The effect of energy-level matching becomes more important with improved Nt. Energy-level matching between the ETL and perovskite absorber layer turns out counterbalance characteristic on Jsc and Voc, and the “ETL(4.0)+HTL(2.5)” case can result in solar cell with Jsc of 27.58 mA/cm2, Voc of 1.0713 V, FF of 66.02% and efficiency of 19.51%. The findings would be very useful for fabricating high-efficiency and low-cost PSC by a large-scale ambient air route.


Author(s):  
Hongling Guo ◽  
Rutao Meng ◽  
Gang Wang ◽  
Shenghao Wang ◽  
Li Wu ◽  
...  

Fabrication of high efficient solar cells is critical for photovoltaic application. The bandgap-graded absorber layer can not only drive carriers efficient collection but also improve the light harvesting. However, it...


Solar Energy ◽  
2022 ◽  
Vol 231 ◽  
pp. 694-704
Author(s):  
Maryam Hashemi ◽  
Seyed Mohammad Bagher Ghorashi ◽  
Fariba Tajabadi ◽  
Nima Taghavinia

2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Vu Minh Han Cao ◽  
Jaesung Bae ◽  
Joongpyo Shim ◽  
Byungyou Hong ◽  
Hongsub Jee ◽  
...  

Alternative photo-sintering techniques for thermal annealing processes are used to improve the morphology, layer properties, and enhance solar cell performance. The fast, nontoxic, low cost, and environmentally friendly characteristics of Cu2ZnSnS4 have led to its consideration as an alternative potential absorber layer in copper indium gallium diselenide thin film solar cells. This work investigates the photo-sintering process for the absorber layer of Cu2ZnSnS4 solar cells. A Cu2ZnSnS4 layer was grown by hot-injection and screen-printing techniques, and the characteristics of the photo-sintered Cu2ZnSnS4 layer were evaluated by X-ray Diffraction, Raman spectroscopy, Energy dispersive X-ray analysis, Ultraviolet-visible spectroscopy, and field emission scanning electron microscopes. Overall, the optimal composition was Cu-poor and Zn-rich, without a secondary phase, estimated optical band-gap energy of approximately 1.6 eV, and enhanced morphology and kesterite crystallization. Using an intensity pulse light technique to the CZTS layer, fabrication of the solar cell device demonstrated successfully, and the efficiency of 1.01% was achieved at 2.96 J/cm2.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8401
Author(s):  
Muneeza Ahmad ◽  
Nadia Shahzad ◽  
Muhammad Ali Tariq ◽  
Abdul Sattar ◽  
Diego Pugliese

Wide bandgap (Eg) perovskite solar cells (PSCs) are emerging as the preferred choice for top cells in a tandem architecture with crystalline silicon solar cells. Among the wide bandgap perovskites, a mixed cation mixed halide composition containing CsyFA1-yPbI3−xBrx is a popular choice because the presence of bromine widens the bandgap and addition of cesium stabilizes the crystal structure. These perovskite layers are commonly fabricated using one-step spin coating technique; however, sequential spin coating followed by dip coating has been successful in offering better control over the crystallization process for low bandgap absorber layers. In this paper, the fabrication of a Cs0.2FA0.8PbI3−xBrx perovskite absorber layer using the sequential deposition route is reported. The concentration of bromine was varied in the range 0 ≤ x ≤ 1 and optical, structural, and morphological properties of the films were studied. As the concentration was increased, the perovskite showed better crystallinity and the presence of large grains with high surface roughness, indicating the formation of the CsPbBr3 phase. Optically, the perovskite films exhibited higher absorbance in the ultraviolet (UV) range between 300 and 500 nm, hence up to x = 0.3 they can be profitably employed as a wide bandgap photon absorber layer in solar cell applications.


Sign in / Sign up

Export Citation Format

Share Document