scholarly journals BACTERIAL DIVERSITY OF THE DEEP SEA OF SANGIHE TALAUD, SULAWESI

Author(s):  
Gintung Patantis ◽  
Ekowati Chasanah ◽  
Dewi Seswita Zilda ◽  
Ikhsan B. Waluyo

Deep sea is an extreme environment characterized by cold temperature, high pressure, lackof  light and nutrients. Microorganisms live in these habitat are unique microorganisms andknown to have tremendous source of potential agents for biotechnology processes. Indonesia asan archipelagic country has a vast deep ocean. This study aims to see the diversity of bacteria inSangihe Talaud Deep Sea, Sulawesi. Analysis of bacterial diversity was carried out by culturedand uncultured method. Terminal Restriction Fragment Length Polymorphism (T-RFLP) techniquewas used for uncultured analysis of the microorganisms biodiversity, while cultured one wasdone by plating the samples of water onto Zobell media. The results showed that, there were 21isolates obtained by cultured method. The identification which based on 16S rDNA by PCR methodshowed the genus of Pseudomonas, Pseudoalteromonas, Alteromonas, Vibrio, Shewanella andUncultured bacterium were identified. However, 14 classes of bacteria were obtained by usingTRFLP method i.e Acetobacteraceae class, Actinobacteria, α-proteobacteria, -proteobacteria, δ-proteobacteria, γ-proteobacteria, Bacili, Bacteroidetes, Chlorobi, Chroococcales, Clostridia,Erysipelotrichi, Synergistia, and Zetaproteobacteria. here were also  unclassified bacteria anduncultured bacterium found in the samples.

2006 ◽  
Vol 72 (5) ◽  
pp. 3788-3792 ◽  
Author(s):  
Julie C. Frey ◽  
Jessica M. Rothman ◽  
Alice N. Pell ◽  
John Bosco Nizeyi ◽  
Michael R. Cranfield ◽  
...  

ABSTRACT We describe the bacterial diversity in fecal samples of a wild gorilla by use of a 16S rRNA gene clone library and terminal-restriction fragment length polymorphism (T-RFLP). Clones were classified as Firmicutes, Verrucomicrobia, Actinobacteria, Lentisphaerae, Bacteroidetes, Spirochetes, and Planctomycetes. Our data suggest that fecal populations did not change temporally, as determined by T-RFLP.


2011 ◽  
Vol 77 (12) ◽  
pp. 4249-4252 ◽  
Author(s):  
Alexandra A. Mushegian ◽  
Celeste N. Peterson ◽  
Christopher C. M. Baker ◽  
Anne Pringle

ABSTRACTSymbioses are unique habitats for bacteria. We surveyed the spatial diversity of bacterial communities across multiple individuals of closely related lichens using terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing. Centers of lichens house richer, more consistent assemblages than species-poor and compositionally disparate lichen edges, suggesting that ecological succession plays a role in structuring these communities.


2006 ◽  
Vol 72 (9) ◽  
pp. 5982-5989 ◽  
Author(s):  
R. Danovaro ◽  
G. M. Luna ◽  
A. Dell'Anno ◽  
B. Pietrangeli

ABSTRACT We investigated bacterial diversity in different aquatic environments (including marine and lagoon sediments, coastal seawater, and groundwater), and we compared two fingerprinting techniques (terminal restriction fragment length polymorphism [T-RFLP] and automated ribosomal intergenic spacer analysis [ARISA]) which are currently utilized for estimating richness and community composition. Bacterial diversity ranged from 27 to 99 phylotypes (on average, 56) using the T-RFLP approach and from 62 to 101 genotypes (on average, 81) when the same samples were analyzed using ARISA. The total diversity encountered in all matrices analyzed was 144 phylotypes for T-RFLP and 200 genotypes for ARISA. Although the two techniques provided similar results in the analysis of community structure, bacterial richness and diversity estimates were significantly higher using ARISA. These findings suggest that ARISA is more effective than T-RFLP in detecting the presence of bacterial taxa accounting for <5% of total amplified product. ARISA enabled also distinction among aquatic bacterial isolates of Pseudomonas spp. which were indistinguishable using T-RFLP analysis. Overall, the results of this study show that ARISA is more accurate than T-RFLP analysis on the 16S rRNA gene for estimating the biodiversity of aquatic bacterial assemblages.


Sign in / Sign up

Export Citation Format

Share Document