THE GRAPH-BASED SEMI-SUPERVISED LEARNING METHOD BUILDS A BALANCED SET FOR IMAGE RETRIEVAL

2021 ◽  
Author(s):  
Cu Viet Dung ◽  
An Hong Son ◽  
Nguyen Huu Quynh ◽  
Ngo Quoc Tao ◽  
Dao Thi Thuy Quynh
2020 ◽  
Author(s):  
Xu Zheng ◽  
Yan Song ◽  
Jie Yan ◽  
Li-Rong Dai ◽  
Ian McLoughlin ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 779
Author(s):  
Ruriko Yoshida

A tropical ball is a ball defined by the tropical metric over the tropical projective torus. In this paper we show several properties of tropical balls over the tropical projective torus and also over the space of phylogenetic trees with a given set of leaf labels. Then we discuss its application to the K nearest neighbors (KNN) algorithm, a supervised learning method used to classify a high-dimensional vector into given categories by looking at a ball centered at the vector, which contains K vectors in the space.


2018 ◽  
Vol 10 (8) ◽  
pp. 1243 ◽  
Author(s):  
Xu Tang ◽  
Xiangrong Zhang ◽  
Fang Liu ◽  
Licheng Jiao

Due to the specific characteristics and complicated contents of remote sensing (RS) images, remote sensing image retrieval (RSIR) is always an open and tough research topic in the RS community. There are two basic blocks in RSIR, including feature learning and similarity matching. In this paper, we focus on developing an effective feature learning method for RSIR. With the help of the deep learning technique, the proposed feature learning method is designed under the bag-of-words (BOW) paradigm. Thus, we name the obtained feature deep BOW (DBOW). The learning process consists of two parts, including image descriptor learning and feature construction. First, to explore the complex contents within the RS image, we extract the image descriptor in the image patch level rather than the whole image. In addition, instead of using the handcrafted feature to describe the patches, we propose the deep convolutional auto-encoder (DCAE) model to deeply learn the discriminative descriptor for the RS image. Second, the k-means algorithm is selected to generate the codebook using the obtained deep descriptors. Then, the final histogrammic DBOW features are acquired by counting the frequency of the single code word. When we get the DBOW features from the RS images, the similarities between RS images are measured using L1-norm distance. Then, the retrieval results can be acquired according to the similarity order. The encouraging experimental results counted on four public RS image archives demonstrate that our DBOW feature is effective for the RSIR task. Compared with the existing RS image features, our DBOW can achieve improved behavior on RSIR.


2014 ◽  
Vol 144 ◽  
pp. 526-536 ◽  
Author(s):  
Jinling Wang ◽  
Ammar Belatreche ◽  
Liam Maguire ◽  
Thomas Martin McGinnity

Sign in / Sign up

Export Citation Format

Share Document