Online Monitoring of Voltage Stability Margin in Kosovo Power System Using Local Measurements

2021 ◽  
Vol 16 (5) ◽  
pp. 446
Author(s):  
Kadri Kadriu ◽  
Gazmend Pula ◽  
Gazmend Kabashi
Author(s):  
Pankaj Sahu ◽  
M. K. Verma

With the growing smart grid concept it becomes important to monitor health of the power system at regular intervals for its secure and reliable operation. Phasor Measurement Units (PMUs) may play a vital role in this regard. This paper presents voltage stability monitoring in real time framework using synchrophasor measurements obtained by PMUs. Proposed approach estimates real power loading margin as well as reactive power loading margin of most critical bus using PMU data. As system operating conditions keep on changing, loading margin as well as critical bus information is updated at regular intervals using fresh PMU measurements. Simulations have been carried out using Power System Analysis Toolbox (PSAT) software. Accuracy of proposed Wide Area Monitoring System (WAMS) based estimation of voltage stability margin has been tested by comparing results with loading margin obtained by continuation power flow method (an offline approach for accurate estimation of voltage stability margin) under same set of operating conditions. Case studies performed on IEEE 14-bus system, New England 39-bus system and a practical 246-bus Indian power system validate effectiveness of proposed approach of online monitoring of loading margin.


2021 ◽  
Author(s):  
Umang Patel

Power system stability is gaining importance because of unusual growth in power system. Day by day use of nonlinear load and other power electronics devices created distortions in the system which creates problems of voltage instability. Voltage stability of system is major concerns in power system stability. When a transmission network is operated near to their voltage stability limit it is difficult to control active-reactive power of the system. Our objectives are the analysis of voltage stability margin and active-reactive power control in proposed system which includes model of STATCOM with aim to analyse its behavior to improve voltage stability margin and active-reactive power control of the system under unbalanced condition. The study has been carried out using MATLAB Simulation program on three phase system connected to unbalanced three phase load via long transmission network and results of voltage and active-reactive power are presented. In future work, we can do power flow calculation of large power system network and find the weakest bus of the system and by placing STATCOM at that bus we can improve over all stability of the system


2018 ◽  
Vol 33 (1) ◽  
pp. 701-713 ◽  
Author(s):  
Shiyang Li ◽  
Venkataramana Ajjarapu ◽  
Miodrag Djukanovic

Sign in / Sign up

Export Citation Format

Share Document