Optimization of support vector machine parameters for voltage stability margin assessment in the deregulated power system

2018 ◽  
Vol 23 (20) ◽  
pp. 10495-10507 ◽  
Author(s):  
G. S. Naganathan ◽  
C. K. Babulal
2021 ◽  
Author(s):  
Umang Patel

Power system stability is gaining importance because of unusual growth in power system. Day by day use of nonlinear load and other power electronics devices created distortions in the system which creates problems of voltage instability. Voltage stability of system is major concerns in power system stability. When a transmission network is operated near to their voltage stability limit it is difficult to control active-reactive power of the system. Our objectives are the analysis of voltage stability margin and active-reactive power control in proposed system which includes model of STATCOM with aim to analyse its behavior to improve voltage stability margin and active-reactive power control of the system under unbalanced condition. The study has been carried out using MATLAB Simulation program on three phase system connected to unbalanced three phase load via long transmission network and results of voltage and active-reactive power are presented. In future work, we can do power flow calculation of large power system network and find the weakest bus of the system and by placing STATCOM at that bus we can improve over all stability of the system


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 857 ◽  
Author(s):  
Walter M. Villa-Acevedo ◽  
Jesús M. López-Lezama ◽  
Delia G. Colomé

This paper presents a novel approach for Voltage Stability Margin (VSM) estimation that combines a Kernel Extreme Learning Machine (KELM) with a Mean-Variance Mapping Optimization (MVMO) algorithm. Since the performance of a KELM depends on a proper parameter selection, the MVMO is used to optimize such task. In the proposed MVMO-KELM model the inputs and output are the magnitudes of voltage phasors and the VSM index, respectively. A Monte Carlo simulation was implemented to build a data base for the training and validation of the model. The data base considers different operative scenarios for three type of customers (residential commercial and industrial) as well as N-1 contingencies. The proposed MVMO-KELM model was validated with the IEEE 39 bus power system comparing its performance with a support vector machine (SVM) and an Artificial Neural Network (ANN) approach. Results evidenced a better performance of the proposed MVMO-KELM model when compared to such techniques. Furthermore, the higher robustness of the MVMO-KELM was also evidenced when considering noise in the input data.


Sign in / Sign up

Export Citation Format

Share Document