scholarly journals A Multi-Scale Structural Degradation Metric for Perceptual Evaluation of 3D Mesh Simplification

2012 ◽  
Vol E95.D (7) ◽  
pp. 1989-2001
Author(s):  
Zhenfeng SHI ◽  
Xiamu NIU ◽  
Liyang YU
2020 ◽  
Vol 27 (4) ◽  
pp. 417-435 ◽  
Author(s):  
Yaqian Liang ◽  
Fazhi He ◽  
Xiantao Zeng

Large-scale 3D models consume large computing and storage resources. To address this challenging problem, this paper proposes a new method to obtain the optimal simplified 3D mesh models with the minimum approximation error. First, we propose a feature-preservation edge collapse operation to maintain the feature edges, in which the collapsing cost is calculated in a novel way by combining Gauss curvature and Quadratic Error Metrics (QEM). Second, we introduce the edge splitting operation into the mesh simplification process and propose a hybrid ‘undo/redo’ mechanism that combines the edge splitting and edge collapse operation to reduce the number of long and narrow triangles. Third, the proposed ‘undo/redo’ mechanism can also reduce the approximation error; however, it is impossible to manually choose the best operation sequence combination that can result in the minimum approximation error. To solve this problem, we formulate the proposed mesh simplification process as an optimization model, in which the solution space is composed of the possible combinations of operation sequences, and the optimization objective is the minimum of the approximation error. Finally, we propose a novel optimization algorithm, WOA-DE, by replacing the exploration phase of the original Whale Optimization Algorithm (WOA) with the mutate and crossover operations of Differential Evolution (DE) to compute the optimal simplified mesh model more efficiently. We conduct numerous experiments to test the capabilities of the proposed method, and the experimental results show that our method outperforms the previous methods in terms of the geometric feature preservation, triangle quality, and approximation error.


Author(s):  
Wei Lyu ◽  
Wei Wu ◽  
Lin Zhang ◽  
Zhaohui Wu ◽  
Zhong Zhou

We propose a novel Laplacian-based algorithm that simplifies triangle surface meshes and can provide different preservation ratios of geometric features. Our efficient and fast algorithm uses a 3D mesh model as input and initially detects geometric features by using a Laplacian-based shape descriptor (L-descriptor). The algorithm further performs an optimized clustering approach that combines a Laplacian operator with K-means clustering algorithm to perform vertex classification. Moreover, we introduce a Laplacian weighted cost function based on L-descriptor to perform feature weighting and error statistics comparison, which are further used to change the deletion order of the model elements and preserve the saliency features. Our algorithm can provide different preservation ratios of geometric features and may be extended to handle arbitrary mesh topologies. Our experiments on a variety of 3D surface meshes demonstrate the advantages of our algorithm in terms of improving accuracy and applicability, and preserving saliency geometric features.


Author(s):  
Ruqin Zhang ◽  
Eliot Winer ◽  
James H. Oliver

3D mesh parameterization is widely investigated with various parameter domains and applied in many computer graphics applications. As many surface meshes are manifolds of genus zero, mapping these meshes onto a topologically equivalent sphere provides some advantages. We introduce an efficient parameterization method based on barycentric embedding for this spherical domain. This method provides an overlapping solution which emphasizes on eliminating the vertex overlappings to ensure bijectivity. Experimental results indicate that it works faster than existing spherical parameterization methods. And we also provide a robust spherical remeshing algorithm based on spherical mesh subdivision. A local recursive subdivision process is employed to cover all the geometric details from the original mesh. Such subdivision process can be controlled to match the desired level of details (LOD), which will create a group of mesh representations with different resolutions. This multi-resolution remeshing framework could benefit various graphical applications including geometry rendering, mesh simplification/refinement, model morphing and etc.


Sign in / Sign up

Export Citation Format

Share Document