scholarly journals A relation between the right triangle and circular tori with constant mean curvature in the unit 3-sphere

2004 ◽  
Vol 76 (4) ◽  
pp. 639-643 ◽  
Author(s):  
Abdênago Barros

In this note we will show that the inverse image under the stereographic projection of a circular torus of revolution in the 3-dimensional euclidean space has constant mean curvature in the unit 3-sphere if and only if their radii are the catet and the hypotenuse of an appropriate right triangle.

1970 ◽  
Vol 22 (2) ◽  
pp. 376-388 ◽  
Author(s):  
Kentaro Yano

Liebmann [12] proved that the only ovaloids with constant mean curvature in a 3-dimensional Euclidean space are spheres. This result has been generalized to the case of convex closed hypersurfaces in an m-dimensional Euclidean space by Alexandrov [1], Bonnesen and Fenchel [3], Hopf [4], Hsiung [5], and Süss [14].The result has been further generalized to the case of closed hypersurfaces in an m-dimensional Riemannian manifold by Alexandrov [2], Hsiung [6], Katsurada [7; 8; 9], Ōtsuki [13], and by myself [15; 16].The attempt to generalize the result to the case of closed submanifolds in an m-dimensional Riemannian manifold has been recently done by Katsurada [10; 11], Kôjyô [10], and Nagai [11].


2006 ◽  
Vol 37 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Dae Won Yoon

In this paper, we mainly investigate non developable ruled surface in a 3-dimensional Euclidean space satisfying the equation $K_{II} = KH$ along each ruling, where $K$ is the Gaussian curvature, $H$ is the mean curvature and $K_{II}$ is the second Gaussian curvature.


Author(s):  
Renzo Caddeo ◽  
Irene I. Onnis ◽  
Paola Piu

AbstractIn this paper, we generalize a classical result of Bour concerning helicoidal surfaces in the three-dimensional Euclidean space $${\mathbb {R}}^3$$ R 3 to the case of helicoidal surfaces in the Bianchi–Cartan–Vranceanu (BCV) spaces, i.e., in the Riemannian 3-manifolds whose metrics have groups of isometries of dimension 4 or 6, except the hyperbolic one. In particular, we prove that in a BCV-space there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface; then, by making use of this two-parameter representation, we characterize helicoidal surfaces which have constant mean curvature, including the minimal ones.


Author(s):  
Luca Guzzardi ◽  
Epifanio G Virga

We propose three integral criteria that must be satisfied by all closed surfaces with constant mean curvature immersed in the three-dimensional Euclidean space. These criteria are integral identities that follow from requiring the second variation of the area functional to be invariant under rigid displacements. We obtain from them a new proof of the old result by Delaunay, to the effect that the sphere is the only closed axis-symmetric surface.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marija Najdanović ◽  
Miroslav Maksimović ◽  
Ljubica Velimirović

Infinitesimal bending of curves lying with a given precision on ruled surfaces in 3-dimensional Euclidean space is studied. In particular, the bending of curves on the cylinder, the hyperbolic paraboloid and the helicoid are considered and appropriate bending fields are found. Some examples are graphically presented.


2019 ◽  
Vol 16 (05) ◽  
pp. 1950076 ◽  
Author(s):  
Rafael López ◽  
Željka Milin Šipuš ◽  
Ljiljana Primorac Gajčić ◽  
Ivana Protrka

In this paper, we study harmonic evolutes of [Formula: see text]-scrolls, that is, of ruled surfaces in Lorentz–Minkowski space having no Euclidean counterparts. Contrary to Euclidean space where harmonic evolutes of surfaces are surfaces again, harmonic evolutes of [Formula: see text]-scrolls turn out to be curves. In particular, we show that the harmonic evolute of a [Formula: see text]-scroll of constant mean curvature together with its base curve forms a null Bertrand pair. This allows us to characterize [Formula: see text]-scrolls of constant mean curvature and reconstruct them from a given null curve which is their harmonic evolute.


1967 ◽  
Vol 30 ◽  
pp. 121-127 ◽  
Author(s):  
Makoto Ohtsuka

The electric capacity of a conductor in the 3-dimensional euclidean space is defined as the ratio of a positive charge given to the conductor and the potential on its surface. The notion of capacity was defined mathematically first by N. Wiener [7] and developed by C. de la Vallée Poussin, O. Frostman and others. For the history we refer to Frostman’s thesis [2]. Recently studies were made on different definitions of capacity and related notions. We refer to M. Ohtsuka [4] and G. Choquet [1], for instance. In the present paper we shall investigate further some relations among various kinds of capacity and related notions. A part of the results was announced in a lecture of the author in 1962.


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


Sign in / Sign up

Export Citation Format

Share Document