scholarly journals Structural and microstructural characterization of tin(II) oxide useful as anode material in lithium rechargeable batteries obtained from a different synthesis route at room temperature

2011 ◽  
Vol 14 (2) ◽  
pp. 172-177 ◽  
Author(s):  
Mario Alberto Macías ◽  
José Antonio Henao Martínez ◽  
Gilles Henri Gauthier ◽  
Jorge Enrique Rodriguez ◽  
Humar Avila ◽  
...  
2004 ◽  
Vol 843 ◽  
Author(s):  
S. Chowdhury ◽  
M. T. Laugier

ABSTRACTWe have reported the synthesis of carbon nitride thin films with evidence of formation of carbon nanodomes over a range of substrate temperature from 50 °C to 550 °C. An RF magnetron sputtering system was used for depositing carbon nitride films. The size of the nanodomes can be controlled by deposition temperature and increases from 40–80 nm at room temperature to 200–400 nm at high temperature (550 °C). Microstructural characterization was performed by AFM. Electrical characterization shows that these films have conductive behaviour with a resistivity depending on the size of the nanodomes. Resistivity values of 20 mΩ-cm were found for nanodomes of size 40–80 nm falling to 6 m?-cm for nanodomes of size 200–400 nm. Nanoindentation results show that the hardness and Young's modulus of these films are in the range from 9–22 GPa and 100–168 GPa respectively and these values decrease as the size of the nanodomes increases. GXRD results confirm that a crystalline graphitic carbon nitride structure has formed.


Author(s):  
J. A. Sutliff ◽  
B. P. Bewlay

In-situ composite Nb-Si alloys have been studied by several investigators as potential high temperature structural materials. The two major processing routes used to fabricate these composites are directional solidification and extrusion of arc-cast solidified ingots. In both cases a stable microstructure of primary Nb dendrites in a eutectoid of Nb and Nb5Si3 phases is developed after heat treatment. The Nb5Si3 phase is stable at room temperature and forms as a decomposition product of the high temperature Nb3Si phase. The anisotropic microstructures developed by both directional solidification and extrusion require evaluation of the texture to fully interpret the fracture and other orientation dependent mechanical behavior of these composites.In this paper we report on the microstructural characterization of a directionally solidified (DS) and heat treated Nb-16 at.%Si alloy. The microtexture of each of the phases (Nb, Nb5Si3) was determined using the Electron BackScattering Pattern (EBSP) technique for electron diffraction in the scanning electron microscope. A system employing automatic diffraction pattern recognition, crystallographic analysis, and sample or beam scanning was used to acquire the microtexture data.


Sign in / Sign up

Export Citation Format

Share Document