deposition temperature
Recently Published Documents


TOTAL DOCUMENTS

1288
(FIVE YEARS 178)

H-INDEX

44
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Anze Zaloznik ◽  
Matthew J Baldwin ◽  
Russell P Doerner ◽  
Gregory de Temmerman ◽  
Richard A Pitts

Abstract Hydrogen isotope co-deposition with Be eroded from the first wall is expected to be the main fusion fuel retention mechanism in ITER. Since good fuel accounting is crucial for economic and safety reasons, reliable predictions of hydrogen isotope retention are needed. This study builds upon the well-established empirical De Temmerman scaling law [1] that predicts D/Be ratios in co-deposited layers based on deposition temperature, deposition rate, and deuterium particle energy. Expanding the data used in the original development of the scaling law with an additional dataset obtained with more recent measurements using a different technique to the original De Temmerman approach, allows us to obtain new values for free parameters and improve the prediction capabilities of the new scaling law. In an effort to improve the model even further, scaling with D2 background pressure was included and a new two-term model derived, describing D retention in low- and high-energy traps separately.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Arvaidas Galdikas ◽  
Mantas Sriubas ◽  
Gediminas Kairaitis ◽  
Darius Virbukas ◽  
Kristina Bockute ◽  
...  

The morphology of aluminum co-doped scandium stabilized zirconia (ScAlSZ) thin films formed by e-beam deposition system was investigated experimentally and theoretically. The dependencies of surface roughness, and the films’ structure on deposition temperature and deposition rate were analyzed. It was shown experimentally that the dependence of the surface roughness on deposition temperature and deposition rate was not monotonic. Those dependencies were analyzed by mathematical modeling. The mathematical model includes the processes of phase separation, adsorption and diffusion process due to the film surface curvature. The impacts of substrate temperature, growth rate on surface roughness of thin films and lateral nanoparticle sizes are shown by the modeling results. Modeling showed that the roughness of the surface of grown films became higher in most cases as the substrate’s temperature rose, but the higher deposition rate resulted in lower surface roughness in most cases. The results obtained by simulations were compared to the relevant experimental data. The non-linear relationships between surface roughness of grown films and lateral size of nanoparticles were also shown by our modeling results, which suggested that the variation in the surface roughness depending on the substrate temperature and growth rate was related to the lateral size of nanoparticles.


2021 ◽  
Vol 122 ◽  
pp. 111742
Author(s):  
A. Ayana ◽  
Parutagouda Shankaragouda Patil ◽  
Neelamma B. Gummagol ◽  
U.K. Goutam ◽  
Pankaj Sharma ◽  
...  

Author(s):  
Anca C. Parau ◽  
Cosmin Mihai Cotrut ◽  
Pasquale Guglielmi ◽  
Angela Cusanno ◽  
Gianfranco Palumbo ◽  
...  

Author(s):  
N.I. Grechanyuk ◽  
V.G. Grechanyuk ◽  
A.F. Manulyk

In this article, the present-day problems of microporous condensed materials obtained from the vapor phase are discussed. The pore sizes are regulated by the amount of the second phase concentration and the deposition temperature. The oxides, fluorides, and sulfides can be used as the second phase and non-removable inclusions. The open porosity can be regulated from 0% to 50 %of the porosity and with average porose sizes of 0.1 to 8 µm. The condensed micro-porous materials can be deposited in coating form or the form of massive bulk sheet materials with a thickness of up to 6 mm and a diameter of 1m.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1468
Author(s):  
Jinyang Ni ◽  
Jin Li ◽  
Jie Jian ◽  
Jianchao He ◽  
Hongsheng Chen ◽  
...  

Multilayer films with high-density layer interfaces have been studied widely because of the unique mechanical and functional properties. Magnetron sputtering is widely chosen to fabricate multilayer films because of the convenience in controlling the microstructure. Essentially, the properties of multilayer films are decided by the microstructure, which could be adjusted by manipulating the deposition parameters, such as deposition temperature, rate, bias, and target–substrate distance, during the sputter process. In this review, the influences of the deposition parameters on the microstructure evolution of the multilayer films have been summarized. Additionally, the impacts of individual layer thickness on the microstructure evolution as well as the irradiation behavior of various multilayer films have been discussed.


Author(s):  
Mateusz Jędrusik ◽  
Christian Turquat ◽  
Łukasz Cieniek ◽  
Agnieszka Kopia ◽  
Christine Leroux

The orthorhombic LaFeO3 thin films grown by pulsed laser deposition on silicon showed nano-structuration of their surface and preferential crystallographic exposed facets, depending on the deposition temperature. The LaFeO3 film deposited at 850°C has two types of grain termination, flat or tip-like, corresponding to two different growth directions, respectively [110] and [200]. Due to the shape of the termination, the same {110} facets are exposed. The LaFeO3 is iron deficient and consequently contains oxygen vacancies, the exact chemical formula being LaFe0.82O3-delta.


Author(s):  
Yi-Lung Cheng ◽  
Yu-Lu Lin ◽  
Wei-Fan Peng ◽  
Chih-Yen Lee ◽  
Yow-Jon Lin

Abstract Silicon carbonitride (SiCN) films deposited using silazane singe-precursor with different temperatures were capped onto porous carbon-doped silicon oxide (p-SiOCH) dielectric films. Effects on the electrical and reliability characteristics of the fabricated SiCN/p-SiOCH stacked dielectrics were investigated. Experimental results indicated that increasing the deposition temperature of the SiCN film increased barrier capacity against Cu migration under thermal and electrical stress and time-dependence-dielectric-breakdown reliability for the SiCN/p-SiOCH stacked dielectric. Therefore, this study provides a promising processing to deposit a SiCN barrier by elevating the deposition temperature and using N-methyl-aza-2,2,4-trimethylsilacyclopentane singe-precursor, which can be applied to back-end-of-line interconnects for advanced technological nodes in the semiconductor industry. A larger capacitance, however, is the main issue due to a larger intrinsic dielectric constant of the SiCN film and stronger plasma-induced damage on the p-SiOCH film. As a result, the related actions will be taken in the future research to improve this issue.


Sign in / Sign up

Export Citation Format

Share Document