scholarly journals F³Net: Fusion, Feedback and Focus for Salient Object Detection

2020 ◽  
Vol 34 (07) ◽  
pp. 12321-12328 ◽  
Author(s):  
Jun Wei ◽  
Shuhui Wang ◽  
Qingming Huang

Most of existing salient object detection models have achieved great progress by aggregating multi-level features extracted from convolutional neural networks. However, because of the different receptive fields of different convolutional layers, there exists big differences between features generated by these layers. Common feature fusion strategies (addition or concatenation) ignore these differences and may cause suboptimal solutions. In this paper, we propose the F3Net to solve above problem, which mainly consists of cross feature module (CFM) and cascaded feedback decoder (CFD) trained by minimizing a new pixel position aware loss (PPA). Specifically, CFM aims to selectively aggregate multi-level features. Different from addition and concatenation, CFM adaptively selects complementary components from input features before fusion, which can effectively avoid introducing too much redundant information that may destroy the original features. Besides, CFD adopts a multi-stage feedback mechanism, where features closed to supervision will be introduced to the output of previous layers to supplement them and eliminate the differences between features. These refined features will go through multiple similar iterations before generating the final saliency maps. Furthermore, different from binary cross entropy, the proposed PPA loss doesn't treat pixels equally, which can synthesize the local structure information of a pixel to guide the network to focus more on local details. Hard pixels from boundaries or error-prone parts will be given more attention to emphasize their importance. F3Net is able to segment salient object regions accurately and provide clear local details. Comprehensive experiments on five benchmark datasets demonstrate that F3Net outperforms state-of-the-art approaches on six evaluation metrics. Code will be released at https://github.com/weijun88/F3Net.

2020 ◽  
Vol 34 (07) ◽  
pp. 12128-12135 ◽  
Author(s):  
Bo Wang ◽  
Quan Chen ◽  
Min Zhou ◽  
Zhiqiang Zhang ◽  
Xiaogang Jin ◽  
...  

Feature matters for salient object detection. Existing methods mainly focus on designing a sophisticated structure to incorporate multi-level features and filter out cluttered features. We present Progressive Feature Polishing Network (PFPN), a simple yet effective framework to progressively polish the multi-level features to be more accurate and representative. By employing multiple Feature Polishing Modules (FPMs) in a recurrent manner, our approach is able to detect salient objects with fine details without any post-processing. A FPM parallelly updates the features of each level by directly incorporating all higher level context information. Moreover, it can keep the dimensions and hierarchical structures of the feature maps, which makes it flexible to be integrated with any CNN-based models. Empirical experiments show that our results are monotonically getting better with increasing number of FPMs. Without bells and whistles, PFPN outperforms the state-of-the-art methods significantly on five benchmark datasets under various evaluation metrics. Our code is available at: https://github.com/chenquan-cq/PFPN.


Author(s):  
Bo Li ◽  
Zhengxing Sun ◽  
Yuqi Guo

Image saliency detection has recently witnessed rapid progress due to deep neural networks. However, there still exist many important problems in the existing deep learning based methods. Pixel-wise convolutional neural network (CNN) methods suffer from blurry boundaries due to the convolutional and pooling operations. While region-based deep learning methods lack spatial consistency since they deal with each region independently. In this paper, we propose a novel salient object detection framework using a superpixelwise variational autoencoder (SuperVAE) network. We first use VAE to model the image background and then separate salient objects from the background through the reconstruction residuals. To better capture semantic and spatial contexts information, we also propose a perceptual loss to take advantage from deep pre-trained CNNs to train our SuperVAE network. Without the supervision of mask-level annotated data, our method generates high quality saliency results which can better preserve object boundaries and maintain the spatial consistency. Extensive experiments on five wildly-used benchmark datasets show that the proposed method achieves superior or competitive performance compared to other algorithms including the very recent state-of-the-art supervised methods.


Author(s):  
Qiang Zhang ◽  
Tonglin Xiao ◽  
Nianchang Huang ◽  
Dingwen Zhang ◽  
Jungong Han

2021 ◽  
pp. 104337
Author(s):  
Jin Zhang ◽  
Yanjiao Shi ◽  
Qing Zhang ◽  
Liu Cui ◽  
Ying Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document