scholarly journals Results on a Super Strong Exponential Time Hypothesis

2020 ◽  
Vol 34 (09) ◽  
pp. 13700-13703
Author(s):  
Nikhil Vyas ◽  
Ryan Williams

All known SAT-solving paradigms (backtracking, local search, and the polynomial method) only yield a 2n(1−1/O(k)) time algorithm for solving k-SAT in the worst case, where the big-O constant is independent of k. For this reason, it has been hypothesized that k-SAT cannot be solved in worst-case 2n(1−f(k)/k) time, for any unbounded ƒ : ℕ → ℕ. This hypothesis has been called the “Super-Strong Exponential Time Hypothesis” (Super Strong ETH), modeled after the ETH and the Strong ETH. We prove two results concerning the Super-Strong ETH:1. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the “critical threshold”, where the clause-to-variable ratio is 2k ln 2 −Θ(1). We give a randomized algorithm which refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable ratio. In particular, given any random k-SAT instance F with n variables and m clauses, our algorithm decides satisfiability for F in 2n(1−Ω( log k)/k) time, with high probability (over the choice of the formula and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT algorithms does the job: the PPZ algorithm of Paturi, Pudlak, and Zane (1998).2. The Unique k-SAT problem is the special case where there is at most one satisfying assignment. It is natural to hypothesize that the worst-case (exponential-time) complexity of Unique k-SAT is substantially less than that of k-SAT. Improving prior reductions, we show the time complexities of Unique k-SAT and k-SAT are very tightly related: if Unique k-SAT is in 2n(1−f(k)/k) time for an unbounded f, then k-SAT is in 2n(1−f(k)(1−ɛ)/k) time for every ɛ > 0. Thus, refuting Super Strong ETH in the unique solution case would refute Super Strong ETH in general.

2021 ◽  
Vol 70 ◽  
pp. 473-495
Author(s):  
Nikhil Vyas ◽  
Ryan Williams

Multiple known algorithmic paradigms (backtracking, local search and the polynomial method) only yield a 2n(1-1/O(k)) time algorithm for k-SAT in the worst case. For this reason, it has been hypothesized that the worst-case k-SAT problem cannot be solved in 2n(1-f(k)/k) time for any unbounded function f. This hypothesis has been called the "Super-Strong ETH", modelled after the ETH and the Strong ETH. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the "critical threshold", where the clause-to-variable ratio is such that randomly chosen instances are satisfiable with probability 1/2. We give a randomized algorithm which refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable ratio. For example, given any random k-SAT instance F with n variables and m clauses, our algorithm decides satisfiability for F in  2n(1-c*log(k)/k) time with high probability (over the choice of the formula and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT algorithms does the job: the PPZ algorithm of Paturi, Pudlak, and Zane (1999).   The Unique k-SAT problem is the special case where there is at most one satisfying assignment. Improving prior reductions, we show that the Super-Strong ETHs for Unique k-SAT and k-SAT are equivalent. More precisely, we show the time complexities of Unique k-SAT and k-SAT are very tightly correlated: if Unique k-SAT is in  2n(1-f(k)/k) time for an unbounded f, then k-SAT is in 2n(1-f(k)/(2k)) time.


2011 ◽  
Vol 21 (01) ◽  
pp. 87-100
Author(s):  
GREG ALOUPIS ◽  
PROSENJIT BOSE ◽  
ERIK D. DEMAINE ◽  
STEFAN LANGERMAN ◽  
HENK MEIJER ◽  
...  

Given a planar polygon (or chain) with a list of edges {e1, e2, e3, …, en-1, en}, we examine the effect of several operations that permute this edge list, resulting in the formation of a new polygon. The main operations that we consider are: reversals which involve inverting the order of a sublist, transpositions which involve interchanging subchains (sublists), and edge-swaps which are a special case and involve interchanging two consecutive edges. When each edge of the given polygon has also been assigned a direction we say that the polygon is signed. In this case any edge involved in a reversal changes direction. We show that a star-shaped polygon can be convexified using O(n2) edge-swaps, while maintaining simplicity, and that this is tight in the worst case. We show that determining whether a signed polygon P can be transformed to one that has rotational or mirror symmetry with P, using transpositions, takes Θ(n log n) time. We prove that the problem of deciding whether transpositions can modify a polygon to fit inside a rectangle is weakly NP-complete. Finally we give an O(n log n) time algorithm to compute the maximum endpoint distance for an oriented chain.


Algorithmica ◽  
2021 ◽  
Author(s):  
Lars Jaffke ◽  
Paloma T. Lima ◽  
Geevarghese Philip

AbstractA clique coloring of a graph is an assignment of colors to its vertices such that no maximal clique is monochromatic. We initiate the study of structural parameterizations of the Clique Coloring problem which asks whether a given graph has a clique coloring with q colors. For fixed $$q \ge 2$$ q ≥ 2 , we give an $$\mathscr {O}^{\star }(q^{{\mathsf {tw}}})$$ O ⋆ ( q tw ) -time algorithm when the input graph is given together with one of its tree decompositions of width $${\mathsf {tw}} $$ tw . We complement this result with a matching lower bound under the Strong Exponential Time Hypothesis. We furthermore show that (when the number of colors is unbounded) Clique Coloring is $$\mathsf {XP}$$ XP parameterized by clique-width.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-24
Author(s):  
Holger Dell ◽  
John Lapinskas

In this article, we introduce a general framework for fine-grained reductions of approximate counting problems to their decision versions. (Thus, we use an oracle that decides whether any witness exists to multiplicatively approximate the number of witnesses with minimal overhead.) This mirrors a foundational result of Sipser (STOC 1983) and Stockmeyer (SICOMP 1985) in the polynomial-time setting, and a similar result of Müller (IWPEC 2006) in the FPT setting. Using our framework, we obtain such reductions for some of the most important problems in fine-grained complexity: the Orthogonal Vectors problem, 3SUM, and the Negative-Weight Triangle problem (which is closely related to All-Pairs Shortest Path). While all these problems have simple algorithms over which it is conjectured that no polynomial improvement is possible, our reductions would remain interesting even if these conjectures were proved; they have only polylogarithmic overhead and can therefore be applied to subpolynomial improvements such as the n 3 / exp(Θ (√ log n ))-time algorithm for the Negative-Weight Triangle problem due to Williams (STOC 2014). Our framework is also general enough to apply to versions of the problems for which more efficient algorithms are known. For example, the Orthogonal Vectors problem over GF( m ) d for constant  m can be solved in time n · poly ( d ) by a result of Williams and Yu (SODA 2014); our result implies that we can approximately count the number of orthogonal pairs with essentially the same running time. We also provide a fine-grained reduction from approximate #SAT to SAT. Suppose the Strong Exponential Time Hypothesis (SETH) is false, so that for some 1 < c < 2 and all k there is an O ( c n )-time algorithm for k -SAT. Then we prove that for all k , there is an O (( c + o (1)) n )-time algorithm for approximate # k -SAT. In particular, our result implies that the Exponential Time Hypothesis (ETH) is equivalent to the seemingly weaker statement that there is no algorithm to approximate #3-SAT to within a factor of 1+ɛ in time 2 o ( n )/ ɛ 2 (taking ɛ > 0 as part of the input).


Author(s):  
Evgeny Dantsin ◽  
Edward A. Hirsch

The chapter is a survey of ideas and techniques behind satisfiability algorithms with the currently best asymptotic upper bounds on the worst-case running time. The survey also includes related structural-complexity topics such as Schaefer’s dichotomy theorem, reductions between various restricted cases of SAT, the exponential time hypothesis, etc.


Author(s):  
Konrad K. Dabrowski ◽  
Peter Jonsson ◽  
Sebastian Ordyniak ◽  
George Osipov

Expressive temporal reasoning formalisms are essential for AI. One family of such formalisms consists of disjunctive extensions of the simple temporal problem (STP). Such extensions are well studied in the literature and they have many important applications. It is known that deciding satisfiability of disjunctive STPs is NP-hard, while the fine-grained complexity of such problems is virtually unexplored. We present novel algorithms that exploit structural properties of the solution space and prove, assuming the Exponential-Time Hypothesis, that their worst-case time complexity is close to optimal. Among other things, we make progress towards resolving a long-open question concerning whether Allen's interval algebra can be solved in single-exponential time, by giving a 2^{O(nloglog(n))} algorithm for the special case of unit-length intervals.


Algorithmica ◽  
2020 ◽  
Author(s):  
Chi-Yeh Chen ◽  
Sun-Yuan Hsieh ◽  
Hoang-Oanh Le ◽  
Van Bang Le ◽  
Sheng-Lung Peng

AbstractIn a graph, a matching cut is an edge cut that is a matching. Matching Cut is the problem of deciding whether or not a given graph has a matching cut, which is known to be $${\mathsf {NP}}$$ NP -complete. While Matching Cut is trivial for graphs with minimum degree at most one, it is $${\mathsf {NP}}$$ NP -complete on graphs with minimum degree two. In this paper, we show that, for any given constant $$c>1$$ c > 1 , Matching Cut is $${\mathsf {NP}}$$ NP -complete in the class of graphs with minimum degree c and this restriction of Matching Cut has no subexponential-time algorithm in the number of vertices unless the Exponential-Time Hypothesis fails. We also show that, for any given constant $$\epsilon >0$$ ϵ > 0 , Matching Cut remains $${\mathsf {NP}}$$ NP -complete in the class of n-vertex (bipartite) graphs with unbounded minimum degree $$\delta >n^{1-\epsilon }$$ δ > n 1 - ϵ . We give an exact branching algorithm to solve Matching Cut for graphs with minimum degree $$\delta \ge 3$$ δ ≥ 3 in $$O^*(\lambda ^n)$$ O ∗ ( λ n ) time, where $$\lambda$$ λ is the positive root of the polynomial $$x^{\delta +1}-x^{\delta }-1$$ x δ + 1 - x δ - 1 . Despite the hardness results, this is a very fast exact exponential-time algorithm for Matching Cut on graphs with large minimum degree; for instance, the running time is $$O^*(1.0099^n)$$ O ∗ ( 1 . 0099 n ) on graphs with minimum degree $$\delta \ge 469$$ δ ≥ 469 . Complementing our hardness results, we show that, for any two fixed constants $$1< c <4$$ 1 < c < 4 and $$c^{\prime }\ge 0$$ c ′ ≥ 0 , Matching Cut is solvable in polynomial time for graphs with large minimum degree $$\delta \ge \frac{1}{c}n-c^{\prime }$$ δ ≥ 1 c n - c ′ .


Sign in / Sign up

Export Citation Format

Share Document