scholarly journals Structural Parameterizations of Clique Coloring

Algorithmica ◽  
2021 ◽  
Author(s):  
Lars Jaffke ◽  
Paloma T. Lima ◽  
Geevarghese Philip

AbstractA clique coloring of a graph is an assignment of colors to its vertices such that no maximal clique is monochromatic. We initiate the study of structural parameterizations of the Clique Coloring problem which asks whether a given graph has a clique coloring with q colors. For fixed $$q \ge 2$$ q ≥ 2 , we give an $$\mathscr {O}^{\star }(q^{{\mathsf {tw}}})$$ O ⋆ ( q tw ) -time algorithm when the input graph is given together with one of its tree decompositions of width $${\mathsf {tw}} $$ tw . We complement this result with a matching lower bound under the Strong Exponential Time Hypothesis. We furthermore show that (when the number of colors is unbounded) Clique Coloring is $$\mathsf {XP}$$ XP parameterized by clique-width.

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


2020 ◽  
Vol 34 (09) ◽  
pp. 13700-13703
Author(s):  
Nikhil Vyas ◽  
Ryan Williams

All known SAT-solving paradigms (backtracking, local search, and the polynomial method) only yield a 2n(1−1/O(k)) time algorithm for solving k-SAT in the worst case, where the big-O constant is independent of k. For this reason, it has been hypothesized that k-SAT cannot be solved in worst-case 2n(1−f(k)/k) time, for any unbounded ƒ : ℕ → ℕ. This hypothesis has been called the “Super-Strong Exponential Time Hypothesis” (Super Strong ETH), modeled after the ETH and the Strong ETH. We prove two results concerning the Super-Strong ETH:1. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the “critical threshold”, where the clause-to-variable ratio is 2k ln 2 −Θ(1). We give a randomized algorithm which refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable ratio. In particular, given any random k-SAT instance F with n variables and m clauses, our algorithm decides satisfiability for F in 2n(1−Ω( log k)/k) time, with high probability (over the choice of the formula and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT algorithms does the job: the PPZ algorithm of Paturi, Pudlak, and Zane (1998).2. The Unique k-SAT problem is the special case where there is at most one satisfying assignment. It is natural to hypothesize that the worst-case (exponential-time) complexity of Unique k-SAT is substantially less than that of k-SAT. Improving prior reductions, we show the time complexities of Unique k-SAT and k-SAT are very tightly related: if Unique k-SAT is in 2n(1−f(k)/k) time for an unbounded f, then k-SAT is in 2n(1−f(k)(1−ɛ)/k) time for every ɛ > 0. Thus, refuting Super Strong ETH in the unique solution case would refute Super Strong ETH in general.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-24
Author(s):  
Holger Dell ◽  
John Lapinskas

In this article, we introduce a general framework for fine-grained reductions of approximate counting problems to their decision versions. (Thus, we use an oracle that decides whether any witness exists to multiplicatively approximate the number of witnesses with minimal overhead.) This mirrors a foundational result of Sipser (STOC 1983) and Stockmeyer (SICOMP 1985) in the polynomial-time setting, and a similar result of Müller (IWPEC 2006) in the FPT setting. Using our framework, we obtain such reductions for some of the most important problems in fine-grained complexity: the Orthogonal Vectors problem, 3SUM, and the Negative-Weight Triangle problem (which is closely related to All-Pairs Shortest Path). While all these problems have simple algorithms over which it is conjectured that no polynomial improvement is possible, our reductions would remain interesting even if these conjectures were proved; they have only polylogarithmic overhead and can therefore be applied to subpolynomial improvements such as the n 3 / exp(Θ (√ log n ))-time algorithm for the Negative-Weight Triangle problem due to Williams (STOC 2014). Our framework is also general enough to apply to versions of the problems for which more efficient algorithms are known. For example, the Orthogonal Vectors problem over GF( m ) d for constant  m can be solved in time n · poly ( d ) by a result of Williams and Yu (SODA 2014); our result implies that we can approximately count the number of orthogonal pairs with essentially the same running time. We also provide a fine-grained reduction from approximate #SAT to SAT. Suppose the Strong Exponential Time Hypothesis (SETH) is false, so that for some 1 < c < 2 and all k there is an O ( c n )-time algorithm for k -SAT. Then we prove that for all k , there is an O (( c + o (1)) n )-time algorithm for approximate # k -SAT. In particular, our result implies that the Exponential Time Hypothesis (ETH) is equivalent to the seemingly weaker statement that there is no algorithm to approximate #3-SAT to within a factor of 1+ɛ in time 2 o ( n )/ ɛ 2 (taking ɛ > 0 as part of the input).


Algorithmica ◽  
2020 ◽  
Author(s):  
Chi-Yeh Chen ◽  
Sun-Yuan Hsieh ◽  
Hoang-Oanh Le ◽  
Van Bang Le ◽  
Sheng-Lung Peng

AbstractIn a graph, a matching cut is an edge cut that is a matching. Matching Cut is the problem of deciding whether or not a given graph has a matching cut, which is known to be $${\mathsf {NP}}$$ NP -complete. While Matching Cut is trivial for graphs with minimum degree at most one, it is $${\mathsf {NP}}$$ NP -complete on graphs with minimum degree two. In this paper, we show that, for any given constant $$c>1$$ c > 1 , Matching Cut is $${\mathsf {NP}}$$ NP -complete in the class of graphs with minimum degree c and this restriction of Matching Cut has no subexponential-time algorithm in the number of vertices unless the Exponential-Time Hypothesis fails. We also show that, for any given constant $$\epsilon >0$$ ϵ > 0 , Matching Cut remains $${\mathsf {NP}}$$ NP -complete in the class of n-vertex (bipartite) graphs with unbounded minimum degree $$\delta >n^{1-\epsilon }$$ δ > n 1 - ϵ . We give an exact branching algorithm to solve Matching Cut for graphs with minimum degree $$\delta \ge 3$$ δ ≥ 3 in $$O^*(\lambda ^n)$$ O ∗ ( λ n ) time, where $$\lambda$$ λ is the positive root of the polynomial $$x^{\delta +1}-x^{\delta }-1$$ x δ + 1 - x δ - 1 . Despite the hardness results, this is a very fast exact exponential-time algorithm for Matching Cut on graphs with large minimum degree; for instance, the running time is $$O^*(1.0099^n)$$ O ∗ ( 1 . 0099 n ) on graphs with minimum degree $$\delta \ge 469$$ δ ≥ 469 . Complementing our hardness results, we show that, for any two fixed constants $$1< c <4$$ 1 < c < 4 and $$c^{\prime }\ge 0$$ c ′ ≥ 0 , Matching Cut is solvable in polynomial time for graphs with large minimum degree $$\delta \ge \frac{1}{c}n-c^{\prime }$$ δ ≥ 1 c n - c ′ .


Algorithmica ◽  
2021 ◽  
Author(s):  
Julian Dörfler ◽  
Marc Roth ◽  
Johannes Schmitt ◽  
Philip Wellnitz

AbstractWe study the problem $$\#\textsc {IndSub}(\varPhi )$$ # I N D S U B ( Φ ) of counting all induced subgraphs of size k in a graph G that satisfy the property $$\varPhi $$ Φ . It is shown that, given any graph property $$\varPhi $$ Φ that distinguishes independent sets from bicliques, $$\#\textsc {IndSub}(\varPhi )$$ # I N D S U B ( Φ ) is hard for the class $$\#\mathsf {W[1]}$$ # W [ 1 ] , i.e., the parameterized counting equivalent of $${{\mathsf {N}}}{{\mathsf {P}}}$$ N P . Under additional suitable density conditions on $$\varPhi $$ Φ , satisfied e.g. by non-trivial monotone properties on bipartite graphs, we strengthen $$\#\mathsf {W[1]}$$ # W [ 1 ] -hardness by establishing that $$\#\textsc {IndSub}(\varPhi )$$ # I N D S U B ( Φ ) cannot be solved in time $$f(k)\cdot n^{o(k)}$$ f ( k ) · n o ( k ) for any computable function f, unless the Exponential Time Hypothesis fails. Finally, we observe that our results remain true even if the input graph G is restricted to be bipartite and counting is done modulo a fixed prime.


Algorithmica ◽  
2021 ◽  
Author(s):  
Édouard Bonnet ◽  
Nidhi Purohit

AbstractA resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time $$f(\text {pw})n^{o(\text {pw})}$$ f ( pw ) n o ( pw ) on n-vertex graphs of constant degree, with $$\text {pw}$$ pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter $$\text {tl}+\Delta$$ tl + Δ , where $$\text {tl}$$ tl is the tree-length and $$\Delta$$ Δ the maximum-degree of the input graph.


2017 ◽  
Vol 27 (04) ◽  
pp. 277-296 ◽  
Author(s):  
Vincent Froese ◽  
Iyad Kanj ◽  
André Nichterlein ◽  
Rolf Niedermeier

We study the General Position Subset Selection problem: Given a set of points in the plane, find a maximum-cardinality subset of points in general position. We prove that General Position Subset Selection is NP-hard, APX-hard, and present several fixed-parameter tractability results for the problem as well as a subexponential running time lower bound based on the Exponential Time Hypothesis.


Sign in / Sign up

Export Citation Format

Share Document