scholarly journals Representing Fitness Landscapes by Valued Constraints to Understand the Complexity of Local Search

2020 ◽  
Vol 69 ◽  
pp. 1077-1102
Author(s):  
Artem Kaznatcheev ◽  
David Cohen ◽  
Peter Jeavons

Local search is widely used to solve combinatorial optimisation problems and to model biological evolution, but the performance of local search algorithms on different kinds of fitness landscapes is poorly understood. Here we consider how fitness landscapes can be represented using valued constraints, and investigate what the structure of such representations reveals about the complexity of local search.      First, we show that for fitness landscapes representable by binary Boolean valued constraints there is a minimal necessary constraint graph that can be easily computed. Second, we consider landscapes as equivalent if they allow the same (improving) local search moves; we show that a minimal constraint graph still exists, but is NP-hard to compute.      We then develop several techniques to bound the length of any sequence of local search moves. We show that such a bound can be obtained from the numerical values of the constraints in the representation, and show how this bound may be tightened by considering equivalent representations. In the binary Boolean case, we prove that a degree 2 or treestructured constraint graph gives a quadratic bound on the number of improving moves made by any local search; hence, any landscape that can be represented by such a model will be tractable for any form of local search.      Finally, we build two families of examples to show that the conditions in our tractability results are essential. With domain size three, even just a path of binary constraints can model a landscape with an exponentially long sequence of improving moves. With a treewidth-two constraint graph, even with a maximum degree of three, binary Boolean constraints can model a landscape with an exponentially long sequence of improving moves.

2010 ◽  
Vol 33 (7) ◽  
pp. 1127-1139
Author(s):  
Da-Ming ZHU ◽  
Shao-Han MA ◽  
Ping-Ping ZHANG

2008 ◽  
Vol 105 (40) ◽  
pp. 15253-15257 ◽  
Author(s):  
Mikko Alava ◽  
John Ardelius ◽  
Erik Aurell ◽  
Petteri Kaski ◽  
Supriya Krishnamurthy ◽  
...  

We study the performance of stochastic local search algorithms for random instances of the K-satisfiability (K-SAT) problem. We present a stochastic local search algorithm, ChainSAT, which moves in the energy landscape of a problem instance by never going upwards in energy. ChainSAT is a focused algorithm in the sense that it focuses on variables occurring in unsatisfied clauses. We show by extensive numerical investigations that ChainSAT and other focused algorithms solve large K-SAT instances almost surely in linear time, up to high clause-to-variable ratios α; for example, for K = 4 we observe linear-time performance well beyond the recently postulated clustering and condensation transitions in the solution space. The performance of ChainSAT is a surprise given that by design the algorithm gets trapped into the first local energy minimum it encounters, yet no such minima are encountered. We also study the geometry of the solution space as accessed by stochastic local search algorithms.


Sign in / Sign up

Export Citation Format

Share Document