scholarly journals Regular Path Queries in Lightweight Description Logics: Complexity and Algorithms

2015 ◽  
Vol 53 ◽  
pp. 315-374 ◽  
Author(s):  
Meghyn Bienvenu ◽  
Magdalena Ortiz ◽  
Mantas Simkus

Conjunctive regular path queries are an expressive extension of the well-known class of conjunctive queries. Such queries have been extensively studied in the (graph) database community, since they support a controlled form of recursion and enable sophisticated path navigation. Somewhat surprisingly, there has been little work aimed at using such queries in the context of description logic (DL) knowledge bases, particularly for the lightweight DLs that are considered best suited for data-intensive applications. This paper aims to bridge this gap by providing algorithms and tight complexity bounds for answering two-way conjunctive regular path queries over DL knowledge bases formulated in lightweight DLs of the DL-Lite and EL families. Our results demonstrate that in data complexity, the cost of moving to this richer query language is as low as one could wish for: the problem is NL-complete for DL-Lite and P-complete for EL. The combined complexity of query answering increases from NP- to PSpace-complete, but for two-way regular path queries (without conjunction), we show that query answering is tractable even with respect to combined complexity. Our results reveal two-way conjunctive regular path queries as a promising language for querying data enriched by ontologies formulated in DLs of the DL-Lite and EL families or the corresponding OWL 2 QL and EL profiles.

2008 ◽  
Vol 31 ◽  
pp. 157-204 ◽  
Author(s):  
B. Glimm ◽  
C. Lutz ◽  
I. Horrocks ◽  
U. Sattler

Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, conjunctive query answering over DL knowledge bases is only poorly understood if transitive roles are admitted in the query. In this paper, we consider unions of conjunctive queries over knowledge bases formulated in the prominent DL SHIQ and allow transitive roles in both the query and the knowledge base. We show decidability of query answering in this setting and establish two tight complexity bounds: regarding combined complexity, we prove that there is a deterministic algorithm for query answering that needs time single exponential in the size of the KB and double exponential in the size of the query, which is optimal. Regarding data complexity, we prove containment in co-NP.


Author(s):  
Jean-François Baget ◽  
Meghyn Bienvenu ◽  
Marie-Laure Mugnier ◽  
Michael Thomazo

Ontology-mediated query answering is concerned with the problem of answering queries over knowledge bases consisting of a database instance and an ontology. While most work in the area focuses on conjunctive queries, navigational queries are gaining increasing attention. In this paper, we investigate the complexity of answering two-way conjunctive regular path queries (CRPQs) over knowledge bases whose ontology is given by a set of guarded existential rules. We first consider the subclass of linear existential rules and show that CRPQ answering is EXPTIME-complete in combined complexity and NL-complete in data complexity, matching the recently established bounds for answering non-conjunctive RPQs. For guarded rules, we provide a non-trivial reduction to the linear case, which allows us to show that the complexity of CRPQ answering is the same as for plain conjunctive queries, namely, 2EXPTIME-complete in combined complexity and PTIME-complete in data complexity.


Author(s):  
Diego Figueira ◽  
Santiago Figueira ◽  
Edwin Pin Baque

Finite ontology mediated query answering (FOMQA) is the variant of ontology mediated query answering (OMQA) where the represented world is assumed to be finite, and thus only finite models of the ontology are considered. We study the property of finite-controllability, that is, whether FOMQA and OMQA are equivalent, for fragments of C2RPQ. C2RPQ is the language of conjunctive two-way regular path queries, which can be regarded as the result of adding simple recursion to Conjunctive Queries. For graph classes S, we consider fragments C2RPQ(S) of C2RPQ as the queries whose underlying graph structure is in S. We completely classify the finitely controllable and non-finitely controllable fragments under: inclusion dependencies, (frontier-)guarded rules, frontier-one rules (either with or without constants), and more generally under guarded-negation first-order constraints. For the finitely controllable fragments, we show a reduction to the satisfiability problem for guarded-negation first-order logic, yielding a 2EXPTIME algorithm (in combined complexity) for the corresponding (F)OMQA problem.


Author(s):  
Bartosz Bednarczyk ◽  
Sebastian Rudolph

Among the most expressive knowledge representation formalisms are the description logics of the Z family. For well-behaved fragments of ZOIQ, entailment of positive two-way regular path queries is well known to be 2EXPTIME-complete under the proviso of unary encoding of numbers in cardinality constraints. We show that this assumption can be dropped without an increase in complexity and EXPTIME-completeness can be achieved when bounding the number of query atoms, using a novel reduction from query entailment to knowledge base satisfiability. These findings allow to strengthen other results regarding query entailment and query containment problems in very expressive description logics. Our results also carry over to GC2, the two-variable guarded fragment of first-order logic with counting quantifiers, for which hitherto only conjunctive query entailment has been investigated.


Author(s):  
Víctor Gutiérrez-Basulto ◽  
Jean Christoph Jung ◽  
Leif Sabellek

We introduce the query-by-example (QBE) paradigm for query answering in the presence of ontologies. Intuitively, QBE permits non-expert users to explore the data by providing examples of the information they (do not) want, which the system then generalizes into a query. Formally, we study the following question: given a knowledge base and sets of positive and negative examples, is there a query that returns all positive but none of the negative examples?  We focus on description logic knowledge bases with ontologies formulated in Horn-ALCI and (unions of) conjunctive queries. Our main contributions are characterizations, algorithms and tight complexity bounds for QBE.  


Author(s):  
Tomasz Gogacz ◽  
Víctor Gutiérrez-Basulto ◽  
Yazmín Ibáñez-García ◽  
Jean Christoph Jung ◽  
Filip Murlak

We study the description logic SQ with number restrictions applicable to transitive roles, extended with either nominals or inverse roles. We show tight 2EXPTIME upper bounds for unrestricted entailment of regular path queries for both extensions and finite entailment of positive existential queries for nominals. For inverses, we establish 2EXPTIME-completeness for unrestricted and finite entailment of instance queries (the latter under restriction to a single, transitive role).


2020 ◽  
Vol 34 (03) ◽  
pp. 2782-2789
Author(s):  
Gianluca Cima ◽  
Maurizio Lenzerini ◽  
Antonella Poggi

In the context of the Description Logic DL-Liteℛ≠, i.e., DL-Liteℛ without UNA and with inequality axioms, we address the problem of adding to unions of conjunctive queries (UCQs) one of the simplest forms of negation, namely, inequality. It is well known that answering conjunctive queries with unrestricted inequalities over DL-Liteℛ ontologies is in general undecidable. Therefore, we explore two strategies for recovering decidability, and, hopefully, tractability. Firstly, we weaken the ontology language, and consider the variant of DL-Liteℛ≠ corresponding to rdfs enriched with both inequality and disjointness axioms. Secondly, we weaken the query language, by preventing inequalities to be applied to existentially quantified variables, thus obtaining the class of queries named UCQ≠,bs. We prove that in the two cases, query answering is decidable, and we provide tight complexity bounds for the problem, both for data and combined complexity. Notably, the results show that answering UCQ≠,bs over DL-Liteℛ≠ ontologies is still in AC0 in data complexity.


Author(s):  
Diego Figueira ◽  
Adwait Godbole ◽  
S. Krishna ◽  
Wim Martens ◽  
Matthias Niewerth ◽  
...  

Testing containment of queries is a fundamental reasoning task in knowledge representation. We study here the containment problem for Conjunctive Regular Path Queries (CRPQs), a navigational query language extensively used in ontology and graph database querying. While it is known that containment of CRPQs is EXPSPACE-complete in general, we focus here on severely restricted fragments, which are known to be highly relevant in practice according to several recent studies. We obtain a detailed overview of the complexity of the containment problem, depending on the features used in the regular expressions of the queries, with completeness results for NP, Pi2p, PSPACE or EXPSPACE.


Sign in / Sign up

Export Citation Format

Share Document