conjunctive query
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
GABRIELLA PASI ◽  
RAFAEL PEÑALOZA

Abstract A prominent problem in knowledge representation is how to answer queries taking into account also the implicit consequences of an ontology representing domain knowledge. While this problem has been widely studied within the realm of description logic ontologies, it has been surprisingly neglected within the context of vague or imprecise knowledge, particularly from the point of view of mathematical fuzzy logic. In this paper, we study the problem of answering conjunctive queries and threshold queries w.r.t. ontologies in fuzzy DL-Lite. Specifically, we show through a rewriting approach that threshold query answering w.r.t. consistent ontologies remains in ${AC}^{0}$ in data complexity, but that conjunctive query answering is highly dependent on the selected triangular norm, which has an impact on the underlying semantics. For the idempotent Gödel t-norm, we provide an effective method based on a reduction to the classical case.


2021 ◽  
Vol 22 (4) ◽  
pp. 1-52
Author(s):  
Marcelo Arenas ◽  
Pablo BarcelÓ ◽  
Mikaël Monet

We study the complexity of various fundamental counting problems that arise in the context of incomplete databases, i.e., relational databases that can contain unknown values in the form of labeled nulls. Specifically, we assume that the domains of these unknown values are finite and, for a Boolean query  q , we consider the following two problems: Given as input an incomplete database  D , (a) return the number of completions of  D that satisfy  q ; or (b) return the number of valuations of the nulls of  D yielding a completion that satisfies  q . We obtain dichotomies between #P-hardness and polynomial-time computability for these problems when  q is a self-join–free conjunctive query and study the impact on the complexity of the following two restrictions: (1) every null occurs at most once in  D (what is called Codd tables ); and (2) the domain of each null is the same. Roughly speaking, we show that counting completions is much harder than counting valuations: For instance, while the latter is always in #P, we prove that the former is not in #P under some widely believed theoretical complexity assumption. Moreover, we find that both (1) and (2) can reduce the complexity of our problems. We also study the approximability of these problems and show that, while counting valuations always has a fully polynomial-time randomized approximation scheme (FPRAS), in most cases counting completions does not. Finally, we consider more expressive query languages and situate our problems with respect to known complexity classes.


2021 ◽  
Vol 46 (3) ◽  
pp. 1-39
Author(s):  
Mahmoud Abo Khamis ◽  
Phokion G. Kolaitis ◽  
Hung Q. Ngo ◽  
Dan Suciu

The query containment problem is a fundamental algorithmic problem in data management. While this problem is well understood under set semantics, it is by far less understood under bag semantics. In particular, it is a long-standing open question whether or not the conjunctive query containment problem under bag semantics is decidable. We unveil tight connections between information theory and the conjunctive query containment under bag semantics. These connections are established using information inequalities, which are considered to be the laws of information theory. Our first main result asserts that deciding the validity of a generalization of information inequalities is many-one equivalent to the restricted case of conjunctive query containment in which the containing query is acyclic; thus, either both these problems are decidable or both are undecidable. Our second main result identifies a new decidable case of the conjunctive query containment problem under bag semantics. Specifically, we give an exponential-time algorithm for conjunctive query containment under bag semantics, provided the containing query is chordal and admits a simple junction tree.


2021 ◽  
Author(s):  
Claudia Cauli ◽  
Magdalena Ortiz ◽  
Nir Piterman

Infrastructure in the cloud is deployed through configuration files, which specify the resources to be created, their settings, and their connectivity. We aim to model infrastructure before deployment and reason about it so that potential vulnerabilities can be discovered and security best practices enforced. Description logics are a good match for such modeling efforts and allow for a succinct and natural description of cloud infrastructure. Their open-world assumption allows capturing the distributed nature of the cloud, where a newly deployed infrastructure could connect to pre-existing resources not necessarily owned by the same user. However, parts of the infrastructure that are fully known need closed-world reasoning, calling for the usage of expressive formalisms, which increase the computational complexity of reasoning. Here, we suggest an extension of DL-LiteF that is tailored for capturing such cloud infrastructure. Our logic allows combining a core part that is completely defined (closed-world) and interacts with a partially known environment (open-world). We show that this extension preserves the first-order rewritability of DL-LiteF for knowledge-base satisfiability and conjunctive query answering. Security properties combine universal and existential reasoning about infrastructure. Thus, we also consider the problem of conjunctive query satisfiability and show that it can be solved in logarithmic space in data complexity.


Author(s):  
Piero A. Bonatti

AbstractThis paper partially bridges a gap in the literature on Circumscription in Description Logics by investigating the tractability of conjunctive query answering in OWL2’s profiles. It turns out that the data complexity of conjunctive query answering is coNP-hard in circumscribed $\mathcal {E}{\mathscr{L}}$ E L and DL-lite, while in circumscribed OWL2-RL conjunctive queries retain their classical semantics. In an attempt to capture nonclassical inferences in OWL2-RL, we consider conjunctive queries with safe negation. They can detect some of the nonclassical consequences of circumscribed knowledge bases, but data complexity becomes coNP-hard. In circumscribed $\mathcal {E}{\mathscr{L}}$ E L , answering queries with safe negation is undecidable.


2021 ◽  
Vol 178 (4) ◽  
pp. 315-346
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

We present a KE-tableau-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic 𝒟ℒ〈4LQSR,×〉(D) (𝒟ℒD4,×, for short). Our application solves the main TBox and ABox reasoning problems for 𝒟ℒD4,×. In particular, it solves the consistency and the classification problems for 𝒟ℒD4,×-knowledge bases represented in set-theoretic terms, and a generalization of the Conjunctive Query Answering problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and improves a previous version, is implemented in C++. It supports 𝒟ℒD4,×-knowledge bases serialized in the OWL/XML format and it admits also rules expressed in SWRL (Semantic Web Rule Language).


Cryptography ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Tushar Kanti Saha ◽  
Takeshi Koshiba

Conjunctive queries play a key role in retrieving data from a database. In a database, a query containing many conditions in its predicate, connected by an “and/&/∧” operator, is called a conjunctive query. Retrieving the outcome of a conjunctive query from thousands of records is a heavy computational task. Private data access to an outsourced database is required to keep the database secure from adversaries; thus, private conjunctive queries (PCQs) are indispensable. Cheon, Kim, and Kim (CKK) proposed a PCQ protocol using search-and-compute circuits in which they used somewhat homomorphic encryption (SwHE) for their protocol security. As their protocol is far from being able to be used practically, we propose a practical batch private conjunctive query (BPCQ) protocol by applying a batch technique for processing conjunctive queries over an outsourced database, in which both database and queries are encoded in binary format. As a main technique in our protocol, we develop a new data-packing method to pack many data into a single polynomial with the batch technique. We further enhance the performances of the binary-encoded BPCQ protocol by replacing the binary encoding with N-ary encoding. Finally, we compare the performance to assess the results obtained by the binary-encoded BPCQ protocol and the N-ary-encoded BPCQ protocol.


Author(s):  
Dhruti P. Sharma ◽  
Devesh C. Jinwala

With searchable encryption (SE), the user is allowed to extract partial data from stored ciphertexts from the storage server, based on a chosen query of keywords. A majority of the existing SE schemes support SQL search query, i.e. 'Select * where (list of keywords).' However, applications for encrypted data analysis often need to count data matched with a query, instead of data extraction. For such applications, the execution of SQL aggregate query, i.e. 'Count * where (list of keywords)' at server is essential. Additionally, in case of semi-honest server, privacy of aggregate result is of primary concern. In this article, the authors propose an aggregate searchable encryption with result privacy (ASE-RP) that includes ASearch() algorithm. The proposed ASearch() performs aggregate operation (i.e. Count *) on the implicitly searched ciphertexts (for the conjunctive query) and outputs an encrypted result. The server, due to encrypted form of aggregate result, would not be able to get actual count unless having a decryption key and hence ASearch() offers result privacy.


2020 ◽  
Vol 14 (2) ◽  
pp. 228-240
Author(s):  
Xiao Hu ◽  
Shouzhuo Sun ◽  
Shweta Patwa ◽  
Debmalya Panigrahi ◽  
Sudeepa Roy
Keyword(s):  

Author(s):  
Georg Gottlob ◽  
Cem Okulmus ◽  
Reinhard Pichler

Constraint Satisfaction Problems (CSP) are notoriously hard. Consequently, powerful decomposition methods have been developed to overcome this complexity. However, this poses the challenge of actually computing such a decomposition for a given CSP instance, and previous algorithms have shown their limitations in doing so. In this paper, we present a number of key algorithmic improvements and parallelisation techniques to compute so-called Generalized Hypertree Decompositions (GHDs) faster. We thus advance the ability to compute optimal (i.e., minimal-width) GHDs for a significantly wider range of CSP instances on modern machines. This lays the foundation for more systems and applications in evaluating CSPs and related problems (such as Conjunctive Query answering) based on their structural properties.


Sign in / Sign up

Export Citation Format

Share Document