Assessment of the interFoam solver in the modeling of circular hydraulic jumps

Author(s):  
Hossein Askarizadeh ◽  
Reinhold Kneer ◽  
Wilko Rohlfs
Keyword(s):  
Author(s):  
P. J. Disimile ◽  
J. M. Pyles ◽  
N. Toy
Keyword(s):  

2012 ◽  
Vol 43 ◽  
pp. 39-55 ◽  
Author(s):  
R. Skartlien ◽  
J.A. Julshamn ◽  
C.J. Lawrence ◽  
L. Liu

2011 ◽  
Vol 687 ◽  
pp. 194-208 ◽  
Author(s):  
Andrew McC. Hogg ◽  
William K. Dewar ◽  
Pavel Berloff ◽  
Marshall L. Ward

AbstractThe interaction of a dipolar vortex with topography is examined using a combination of analytical solutions and idealized numerical models. It is shown that an anticyclonic vortex may generate along-topography flow with sufficient speeds to excite hydraulic control with respect to local Kelvin waves. A critical condition for Kelvin wave hydraulic control is found for the simplest case of a 1.5-layer shallow water model. It is proposed that in the continuously stratified case this mechanism may allow an interaction between low mode vortices and higher mode Kelvin waves, thereby generating rapidly converging isopycnals and hydraulic jumps. Thus, Kelvin wave hydraulic control may contribute to the flux of energy from mesoscale to smaller, unbalanced, scales of motion in the ocean.


1986 ◽  
Vol 163 ◽  
pp. 27-58 ◽  
Author(s):  
Laurence Armi

This is a theoretical and experimental study of the basic hydraulics of two flowing layers. Unlike single-layer flows, two-layer flows respond quite differently to bottom depth as opposed to width variations. Bottom-depth changes affect the lower layer directly and the upper layer only indirectly. Changes in width can affect both layers. In fact for flows through a contraction control two distinct flow configurations are possible; which one actually occurs depends on the requirements of matching a downstream flow. Two-layer flows can pass through internally critical conditions at other than the narrowest section. When the two layers are flowing in the same direction, the result is a strong coupling between the two layers in the neighbourhood of the control. For contractions a particularly simple flow then exists upstream in which there is no longer any significant interfacial dynamics; downstream in the divergent section the flow remains internally supercritical, causing one of the layers to be rapidly accelerated with a resulting instability at the interface. A brief discussion of internal hydraulic jumps based upon the energy equations as opposed to the more traditional momentum equations is included. Previous uniqueness problems are thereby avoided.


2017 ◽  
Vol 834 ◽  
pp. 125-148 ◽  
Author(s):  
S. A. Thorpe ◽  
J. Malarkey ◽  
G. Voet ◽  
M. H. Alford ◽  
J. B. Girton ◽  
...  

A model devised by Thorpe & Li (J. Fluid Mech., vol. 758, 2014, pp. 94–120) that predicts the conditions in which stationary turbulent hydraulic jumps can occur in the flow of a continuously stratified layer over a horizontal rigid bottom is applied to, and its results compared with, observations made at several locations in the ocean. The model identifies two positions in the Samoan Passage at which hydraulic jumps should occur and where changes in the structure of the flow are indeed observed. The model predicts the amplitude of changes and the observed mode 2 form of the transitions. The predicted dissipation of turbulent kinetic energy is also consistent with observations. One location provides a particularly well-defined example of a persistent hydraulic jump. It takes the form of a 390 m thick and 3.7 km long mixing layer with frequent density inversions separated from the seabed by some 200 m of relatively rapidly moving dense water, thus revealing the previously unknown structure of an internal hydraulic jump in the deep ocean. Predictions in the Red Sea Outflow in the Gulf of Aden are relatively uncertain. Available data, and the model predictions, do not provide strong support for the existence of hydraulic jumps. In the Mediterranean Outflow, however, both model and data indicate the presence of a hydraulic jump.


1990 ◽  
Vol 89 (2) ◽  
pp. 127-142 ◽  
Author(s):  
N RAJARATNAM ◽  
RL POWLEY
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document