Flow and Wall Heat Transfer Characteristics of a Longitudinal Vortex Generated by an Oblique Impinging Jet in Drag-Reducing Crossflow

2002 ◽  
Author(s):  
Jens F. Eschenbacher ◽  
Tomoyasu Ota ◽  
Kazuyoshi Nakabe ◽  
Kenjiro Suzuki
Author(s):  
Bin Wu ◽  
Xing Yang ◽  
Lv Ye ◽  
Zhao Liu ◽  
Yu Jiang ◽  
...  

In this paper, effects of three kinds of turning vanes on flow and heat transfer of turbine blade tip-walls with a U-shaped channel have been numerically studied. Numerical simulations are performed to solve three-dimensional, steady, Reynolds-averaged Navier-Stokes equations with the standard k-ω turbulence model. The aspect ratio (AR) and the hydraulic diameter of the channel are 2 and 93.13 mm, respectively. The effects of single-layer, double-layer and double-layer dome-shaped turning vanes in the turn region on the tip-wall heat transfer and overall pressure loss of rectangular U-shaped channels are analyzed. Detailed flow and heat transfer characteristics over the tip-walls, as well as the overall performance, are presented and compared with each other. Results show that the tip-wall heat transfer coefficients with double-layer dome-shaped turning vanes are the highest among the three cases. Double-layer dome-shaped turning vanes can promote the lateral spreading of secondary flow and effectively increase the uniformity of heat transfer on the tip-wall. More importantly, this structure can make the cooling air expand and accelerate at the center region of the top of the U-shaped channel, resulting in more heat to be removed from the tip-wall. Additionally, double-layer dome-shaped turning vanes can effectively reduce the pressure loss of the channel.


Sign in / Sign up

Export Citation Format

Share Document