Ecophysiology and potential effects of blue-green algae in biological nitrogen fixation

2008 ◽  
Vol 10 (3) ◽  
pp. 280-298
Author(s):  
N. Jafari
1969 ◽  
Vol 172 (1029) ◽  
pp. 367-388 ◽  

Biological nitrogen fixation is a characteristic of certain micro-organisms, which may be free-living or occur in symbiotic association with higher plants. The purpose of this paper is to summarize some of the biological and ecological aspects of nitrogen-fixation by free-living forms. Biochemical aspects have been reviewed in other contributions to this discussion by Drs Wilson, Burris, and Cox & Fay. Nitrogen fixation by heterotrophic micro-organisms has been considered by Jensen (1965); nitrogen fixation by blue-green algae by Fogg & Stewart (1965), and by Stewart (1966, 1969), while Moore (1966) has evaluated the contribution of nitrogen-fixing micro-organisms to soil fertility.


1985 ◽  
Vol 63 (5) ◽  
pp. 974-979 ◽  
Author(s):  
Jim D. Karagatzides ◽  
Martin C. Lewis ◽  
Herbert M. Schulman

The acetylene reduction assay was used to examine biological nitrogen fixation in the high arctic tundra at Sarcpa Lake, Northwest Territories (68°32′ N, 83°19′ W). The highest rates of acetylene reduction (9.37 ± 3.19 μmol C2H4 m−2 h−1) were in habitats that had a high density of the legumes Oxytropis maydelliana, O. arctobia, and Astragalus alpinus. Nitrogen fixation in the wet soils along the shore of a small lake was similar (8.87 ± 4.35 μmol C2H4 m−2 h−1) because of the blue-green alga Nostoc, which associates with mosses. Free-living blue-green algae and lichens made insignificant contributions to the total nitrogen fixation budget because they were uncommon and fixed nitrogen at a slower rate. Nitrogen-fixing lichens in the area included Stereocaulon arenarium and S. rivulorum. It is concluded that legumes have a significant input to the biological nitrogen fixation budget at Sarcpa Lake.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Qin Li ◽  
Haowei Zhang ◽  
Liqun Zhang ◽  
Sanfeng Chen

Abstract Background Biological nitrogen fixation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known. Results A total of 138 nifB genes are found in the 116 diazotrophic Paenibacillus strains. Phylogeny analysis shows that these nifB genes fall into 4 classes: nifBI class including the genes (named as nifB1 genes) that are the first gene within the compact nif gene cluster, nifBII class including the genes (named as nifB2 genes) that are adjacent to anf or vnf genes, nifBIII class whose members are designated as nifB3 genes and nifBIV class whose members are named as nifB4 genes are scattered on genomes. Functional analysis by complementation of the ∆nifB mutant of P. polymyxa which has only one nifB gene has shown that both nifB1 and nifB2 are active in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Deletion analysis also has revealed that nifB1 of Paenibacillus sabinae T27 is involved in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Complementation of the P. polymyxa ∆nifBHDK mutant with the four reconstituted operons: nifB1anfHDGK, nifB2anfHDGK, nifB1vnfHDGK and nifB2vnfHDGK, has shown both that nifB1 and nifB2 were able to support synthesis of Fe- or V-nitrogenases. Transcriptional results obtained in the original Paenibacillus strains are consistent with the complementation results. Conclusions The multiple nifB genes of the diazotrophic Paenibacillus strains are divided into 4 classes. The nifB1 located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV) and the nifB2 genes being adjacent to nif or anf or vnf genes are active in synthesis of Mo-, Fe and V-nitrogenases, but nifB3 and nifB4 are not. The reconstituted anf system comprising 8 genes (nifBanfHDGK and nifXhesAnifV) and vnf system comprising 10 genes (nifBvnfHDGKEN and nifXhesAnifV) support synthesis of Fe-nitrogenase and V-nitrogenase in Paenibacillus background, respectively.


Sign in / Sign up

Export Citation Format

Share Document