symbiotic association
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 158)

H-INDEX

38
(FIVE YEARS 5)

2022 ◽  
Vol 10 (1) ◽  
pp. 194
Author(s):  
Fani Ntana ◽  
Sean R. Johnson ◽  
Björn Hamberger ◽  
Birgit Jensen ◽  
Hans J. L. Jørgensen ◽  
...  

Specialised metabolites produced during plant-fungal associations often define how symbiosis between the plant and the fungus proceeds. They also play a role in the establishment of additional interactions between the symbionts and other organisms present in the niche. However, specialised metabolism and its products are sometimes overlooked when studying plant-microbe interactions. This limits our understanding of the specific symbiotic associations and potentially future perspectives of their application in agriculture. In this study, we used the interaction between the root endophyte Serendipita indica and tomato (Solanum lycopersicum) plants to explore how specialised metabolism of the host plant is regulated upon a mutualistic symbiotic association. To do so, tomato seedlings were inoculated with S. indica chlamydospores and subjected to RNAseq analysis. Gene expression of the main tomato specialised metabolism pathways was compared between roots and leaves of endophyte-colonised plants and tissues of endophyte-free plants. S. indica colonisation resulted in a strong transcriptional response in the leaves of colonised plants. Furthermore, the presence of the fungus in plant roots appears to induce expression of genes involved in the biosynthesis of lignin-derived compounds, polyacetylenes, and specific terpenes in both roots and leaves, whereas pathways producing glycoalkaloids and flavonoids were expressed in lower or basal levels.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalia V. Zhukova ◽  
Marina G. Eliseikina ◽  
Evgeniy S. Balakirev ◽  
Francisco J. Ayala

AbstractThe discovery of symbiotic associations extends our understanding of the biological diversity in the aquatic environment and their impact on the host’s ecology. Of particular interest are nudibranchs that unprotected by a shell and feed mainly on sponges. The symbiotic association of the nudibranch Rostanga alisae with bacteria was supported by ample evidence, including an analysis of cloned bacterial 16S rRNA genes and a fluorescent in situ hybridization analysis, and microscopic observations. A total of 74 clones belonging to the phyla α-, β-, γ-Proteobacteria, Actinobacteria, and Cyanobacteria were identified. FISH confirmed that bacteriocytes were packed with Bradyrhizobium, Maritalea, Labrenzia, Bulkholderia, Achromobacter, and Stenotrophomonas mainly in the foot and notum epidermis, and also an abundance of Synechococcus cyanobacteria in the intestinal epithelium. An ultrastructural analysis showed several bacterial morphotypes of bacteria in epidermal cells, intestine epithelium, and in mucus layer covering the mollusk body. The high proportion of typical bacterial fatty acids in R. alisae indicated that symbiotic bacteria make a substantial contribution to its nutrition. Thus, the nudibranch harbors a high diversity of specific endo- and extracellular bacteria, which previously unknown as symbionts of marine invertebrates that provide the mollusk with essential nutrients. They can provide chemical defense against predators.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Krishni Fernando ◽  
Priyanka Reddy ◽  
Kathryn M. Guthridge ◽  
German C. Spangenberg ◽  
Simone J. Rochfort

Epichloë endophytes, fungal endosymbionts of Pooidae grasses, are commonly utilized in forage and turf industries because they produce beneficial metabolites that enhance resistance against environmental stressors such as insect feeding and disease caused by phytopathogen infection. In pastoral agriculture, phytopathogenic diseases impact both pasture quality and animal production. Recently, bioactive endophyte strains have been reported to secrete compounds that significantly inhibit the growth of phytopathogenic fungi in vitro. A screen of previously described Epichloë-produced antifeedant and toxic alkaloids determined that the antifungal bioactivity observed is not due to the production of these known metabolites, and so there is a need for methods to identify new bioactive metabolites. The process described here is applicable more generally for the identification of antifungals in new endophytes. This study aims to characterize the fungicidal potential of novel, ‘animal friendly’ Epichloë endophyte strains NEA12 and NEA23 that exhibit strong antifungal activity using an in vitro assay. Bioassay-guided fractionation, followed by metabolite analysis, identified 61 metabolites that, either singly or in combination, are responsible for the observed bioactivity. Analysis of the perennial ryegrass-endophyte symbiota confirmed that NEA12 and NEA23 produce the prospective antifungal metabolites in symbiotic association and thus are candidates for compounds that promote disease resistance in planta. The “known unknown” suite of antifungal metabolites identified in this study are potential biomarkers for the selection of strains that enhance pasture and turf production through better disease control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shen Cheng ◽  
Ying-Ning Zou ◽  
Kamil Kuča ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
...  

Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Arafat Hanani ◽  
Franco Valentini ◽  
Simona M. Sanzani ◽  
Franco Santoro ◽  
Serena A. Minutillo ◽  
...  

Endophytes are symptomless fungal and/or bacterial microorganisms found in almost all living plant species. The symbiotic association with their host plants by colonizing the internal tissues has endowed them as a valuable tool to suppress diseases, stimulate growth, and promote stress resistance. In this context, the study of culturable endophytes residing the sapwood of Apulian olives might be a promising control strategy for xylem colonizing pathogens as Xylella fastidiosa. To date, olive sapwood cultivable endophytes are still under exploration; therefore, this work pursues a study of cultivable endophytes occurrence variation in the sapwood of different olive varieties under the effect of seasonality, geographical coordinates, and X. fastidiosa infection status. Our study confirms the stability of sapwood endophytic culturable communities in the resistant olive variety and presents the seasonal and geographical fluctuation of olive trees’ sapwood endophytes. It also describes the diversity and occurrence frequency of fungal and bacterial genera, and finally retrieves some of the sapwood-inhabiting fungal and bacterial isolates, known as biocontrol agents of plant pathogens. Thus, the potential role of these bacterial and fungal isolates in conferring olive tree protection against X. fastidiosa should be further investigated.


2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Sana Kanwal ◽  
Muhammad Rashid ◽  
Sana Ghafar ◽  
Komal Nawwal ◽  
Sana Ajmal ◽  
...  

Fenugreek (Trigonella foenum-graecum) is an aromatic plant that yields secondary metabolites, continuously used for the readiness of food and medicines. The current study is conducted to assess the impact of inoculation of mycorrhiza on the growth of Trigonella foenum-graecum in different soil samples. The current study presents two arrangements of treatment in experimental and control pots. Different soil samples were obtained from different areas for experimental and control pots. In experimental pots, mycorrhiza fungi inoculation is introduced. The six pots were filled with each soil sample. Out of the six pots, three were control pots, and three were inoculated pots. In each pot, 6 kg soil was filled. It was observed that there were more leaves in the experimental (inoculated) pots and fewer in the fenugreek (non-inoculated) pots. The fresh and dry weight of the shoots and roots was taken. However, it was examined that the fresh weight of the shoots and roots of the inoculated pots was more compared to the non-inoculated pots. But the difficulty is seen in the clay control pots of clay soil because of the compactness of the clay soil. It was concluded that fenugreek showed more growth in inoculated pots compared to non-inoculated pots. It was also concluded that mycorrhizal fungal showed symbiotic association with fenugreek plants.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Babacar Thioye ◽  
Marc Legras ◽  
Lisa Castel ◽  
François Hirissou ◽  
Naouel Chaftar ◽  
...  

Soil microorganisms play a central role in biological soil functioning. One of the beneficial microbiota that has a symbiotic association with most of the plants is arbuscular mycorrhizal fungi (AMF). Nevertheless, little is known about the impact of cover crops—widely used in conservation agriculture or organic farming—on native mycorrhizal fungi. This study was conducted in Southern France, in 20-year-old walnut orchards, where faba bean (Vicia faba Roth) was intercropped. To find whether the native AM fungal community associated with walnut trees was influenced by cover crops and soil microbial communities, analyses of soil physicochemical and microbiological indicators were carried out with roots and soil samples collected from four modalities (walnut in conventional farming with and without cover crops, and walnut in organic farming with and without cover crops). Our results showed that the presence of cover crops mainly influenced the soil microbial abundance and activities in conventional plots. In contrast, cover crops stimulated AM fungal colonization of walnut roots in organic plots, reaching 35% and 54% for arbuscule abundance and mycorrhizal intensity, respectively. In conventional plots, ergosterol and mineral nitrogen contents were mainly correlated with mycorrhizal colonization, while only acid phosphatase activity in soil was positively correlated with mycorrhizal colonization in organic plots. The use of the faba bean showed the great role played by cover crops in the enhancement of walnut trees’ mycorrhizal colonization. Identification of the functional traits of AM fungi sensitive to walnut trees is required to inform decisions in specific agricultural practices.


Stresses ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 305-316
Author(s):  
Meenakshi Sharma ◽  
Anil Kumar Delta ◽  
Prashant Kaushik

The inoculation of sunflower (Helianthus annuus L.) plants with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) can significantly enhance its growth and yield in a sustainable manner. Drought tolerance is mediated by a combination of direct AMF and PGPR benefits that boost the plant’s natural ability to cope with stress, whereas drought mitigation is mediated by indirect AMF and PGPR benefits and increased water uptake. An experiment was carried out to demonstrate the interactive effects of AMF (Glomus mosseae) alone or in association with PGPR (Pseudomonas fluorescens) under water-stressed conditions in order to assess their biofertilizer efficiency. Accordingly, various morphological and biochemical parameters were studied, and the results suggested that all the co-inoculation treatments displayed beneficial effects. Still, the combination of G. mosseae + P. fluorescens showed the maximum increment in all the parameters considered, i.e., plant height and weight, leaves length and width, number of leaves per plant, specific leaf weight, relative leaf water content (RLWC), photosynthetic efficiency, seed length, width, and area, seed yield per plant, number of seeds per flower, days to 50% flowering, days to maturity, flower and head diameter, harvest index, oil content, fatty acid composition (palmitic acid, oleic acid, stearic acid, and linoleic acid), and total yield. The improvement in different parameters may be attributed to the increased availability of nutrients due to the symbiotic association of AMF and PGPR with plant roots along with enhanced root structures for more water absorption under stressed conditions. Therefore, the results suggested that they offer a promising bio-control strategy for crop protection as biofertilizers combined in one formulation.


Author(s):  
Amrita Bhaumik ◽  
Veronica Fernandes ◽  
Haimanti Biswas

AbstractPseudohimantidium pacificum, an epizoic diatom has been reported from different parts of the global oceans, however, has not been reported from the shelf waters of India. This symbiotic association of P. pacificum with a specific copepod species (Ditrichocorycaeus affinis) was repeatedly noticed from the shelf waters of the Arabian Sea during the winter monsoon from three locations in the South East Arabian Sea. Our study suggests towards host specificity of P. pacificum and additionally reveals their preference towards male hosts which is consistent with the earlier reports from other regions. Most importantly, this report extends the range of geographic distribution of the epibiont and this is the third report on this epibiont from the Indian Ocean region. It also suggests that epibiosis in marine zooplankton is much frequent phenomenon that has the potential to play an important role in the marine zooplankton population dynamics.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Mariana Herrera ◽  
Fu-Qiang Yu ◽  
David Ramos-Rendón ◽  
Magdalena Martínez-Reyes ◽  
Faustino Hernández-Santiago ◽  
...  

Background: Pinus (Coniferophyta) and Laccaria (Basidiomycota) establish ectomycorrhizal symbioses in natural forests. However, their detailed morphoanatomical and phylogenetic characterization have received little attention. Accurate identification of native host symbionts is of paramount relevance to the production of mycorrhized seedlings for successful reforestation programs. Questions/Objective: We aimed to determine if L. squarrosa is able to establish ectomycorrhizal symbiosis with gymnosperms, thereby widening its host range and highlighting its relevance as a potential inoculant for pine seedlings. Currently, L. squarrosa is only known from its type collection associated with the angiosperm Fagus grandifolia var. mexicana. Studied species: The fungus L. squarrosa and Pinus pseudostrobus, a tree endemic to Mexico.   Study site and dates: A Pinus-Quercus forest in Piedra Canteada, Nanacamilpa, Tlaxcala; 2018-2020. Methods: L. squarrosa basidiomata were identified and ectomycorrhizal roots were collected and morphoanatomically characterized. For molecular identification, DNA was extracted, PCR was performed targeting the nuclear ribosomal internal transcribed spacer region (nucrDNA ITS) for the mycobiont identification and the chloroplastic single-locus trnL region for the phytobiont. Results: In the phylogenetic analyses, our sequences from basidiomata and ectomycorrhizae clustered together with L.squarrosa with high values of supporting identity. Meanwhile, P. pseudostrobus was molecularly identified as the phytobiont. Conclusions: This is one of the few worldwide characterizations of Laccaria ectomycorrhiza under field conditions and contributes to the understanding of the ecology, distribution, and economic relevance of the symbiotic association. Our data suggest that L. squarrosa has potential for use as a native inoculant for P. pseudostrobus tree production. Translate stop   Translate stop  


Sign in / Sign up

Export Citation Format

Share Document