Modified Extragradient Method with Bregman Divergence for Variational Inequalities

2018 ◽  
Vol 50 (8) ◽  
pp. 26-37 ◽  
Author(s):  
Vladimir V. Semenov
2021 ◽  
Author(s):  
Lateef Olakunle Jolaoso ◽  
Pongsakorn Sunthrayuth ◽  
Prasit Cholamjiak ◽  
Yeol Je Cho

Abstract It is well-known that the use of Bregman divergence is an elegant and effective technique for solving many problems in applied sciences. In this paper, we introduce and analyze two new inertial-like algorithms with Bregman divergence for solving pseudomonotone variational inequalities in a real Hilbert space. The first algorithm is inspired by Halpern -type iteration and subgradient extragradient method and the second algorithm is inspired by Halpern -type iteration and Tseng's extragradient method. Under suitable conditions, the strong convergence theorems of the algorithms are established without assuming the Lipschitz continuity and the sequential weak continuity of any mapping. Finally, several numerical experiments with various types of Bregman divergence are also performed to illustrate the theoretical analysis. The results presented in this paper improve and generalize the related works in the literature.


2019 ◽  
Vol 55 (3) ◽  
pp. 359-368 ◽  
Author(s):  
D. A. Nomirovskii ◽  
B. V. Rublyov ◽  
V. V. Semenov

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1915
Author(s):  
Lateef Olakunle Jolaoso ◽  
Maggie Aphane

Herein, we present a new parallel extragradient method for solving systems of variational inequalities and common fixed point problems for demicontractive mappings in real Hilbert spaces. The algorithm determines the next iterate by computing a computationally inexpensive projection onto a sub-level set which is constructed using a convex combination of finite functions and an Armijo line-search procedure. A strong convergence result is proved without the need for the assumption of Lipschitz continuity on the cost operators of the variational inequalities. Finally, some numerical experiments are performed to illustrate the performance of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Muhammad Aslam Noor ◽  
Zhenyu Huang

It is well known that the mixed variational inequalities are equivalent to the fixed point problem. We use this alternative equivalent formulation to suggest some new proximal point methods for solving the mixed variational inequalities. These new methods include the explicit, the implicit, and the extragradient method as special cases. The convergence analysis of these new methods is considered under some suitable conditions. Our method of constructing these iterative methods is very simple. Results proved in this paper may stimulate further research in this direction.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Zhao-Rong Kong ◽  
Lu-Chuan Ceng ◽  
Qamrul Hasan Ansari ◽  
Chin-Tzong Pang

We consider a triple hierarchical variational inequality problem (THVIP), that is, a variational inequality problem defined over the set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational inequalities (SHVI), that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.


Sign in / Sign up

Export Citation Format

Share Document