scholarly journals HEAT TRANSFER ANALYSIS OF A HIGH-TEMPERATURE HEAT PIPE-ASSISTED LATENT HEAT THERMAL ENERGY STORAGE SYSTEM ENHANCED BY METAL FOAM

Author(s):  
Saeed Tiari ◽  
Mahboobe Mahdavi
2019 ◽  
Author(s):  
Mahboobe Mahdavi ◽  
Saeed Tiari ◽  
Carley Sawyer

Abstract The purpose of this study was to ascertain the effects of impregnation of porous material with the PCM on the thermal performance of a shell and tube latent heat thermal energy storage system. The heat transfer fluid flows in the tube while the phase change material is stored in the shell. A transient numerical model was developed to simulate the charging process of the system. The effects of porous material filling ratio, and its properties such as porosity and permeability, were studied on the performance of the system. The results showed that the porosity of the material or the metal foam has the greatest effect on the heat transfer and charging time of the system specifically for a filling ratio of one, or when the entire annular gap between the inner and outer tube is filled with the metal foam. As the filling ratio decreases, the effect of the porosity decreases; however, there is no linear relationship between the filling ratio and the decrease in the melting time as the porosity changes.


1996 ◽  
Vol 118 (1) ◽  
pp. 50-57 ◽  
Author(s):  
A. A. Jalalzadeh-Azar ◽  
W. G. Steele ◽  
G. A. Adebiyi

A model is developed and experimentally verified to study the heat transfer in a high-temperature packed bed thermal energy storage system utilizing zirconium oxide pellets. The packed bed receives flue gas at elevated temperatures varying with time during the storage process and utilizes air for the recovery process. Both convection and radiation are included in the model of the total heat transfer between the gas and the pellets. It is found that thermal radiation and intraparticle conduction do not play a major role in the overall heat transfer in the packed bed under the specified operating conditions. An uncertainty analysis is performed to investigate the propagation of the uncertainties in the variables to the overall uncertainty in the model predictions and the experimental results.


Sign in / Sign up

Export Citation Format

Share Document