scholarly journals Sorbitol-induced changes in various growth and biochemici parameters in maize

2010 ◽  
Vol 56 (No. 6) ◽  
pp. 263-267 ◽  
Author(s):  
M. Jain ◽  
S. Tiwary ◽  
R. Gadre

Treatment of maize seedlings with different concentrations of sorbitol decreased the rate of germination substantially. Root and shoot length was also reduced by sorbitol treatment, however, decrease in root length was lower than shoot length. Incubation of leaf segments from maize seedlings grown in continuous light with sorbitol decreased the fresh weight and increased the dry weight in a concentration-dependent manner. Sorbitol treatment also reduced the total chlorophylls, chlorophyll a as well as chlorophyll b; the decrease in chlorophyll 'b' being more prominent than chlorophyll 'a', however, carotenoid content was declined marginally. Supply of sorbitol decreased the protein and RNA content; however, proline content and in vivo nitrate reductase activity (NRA) were increased. The results demonstrate an inhibitory effect of sorbitol-induced stress on overall growth in maize. Amongst the biochemical parameters analysed, chlorophyll, protein and RNA contents were declined, while proline content and nitrate reductase activity were enhanced with sorbitol treatment.

2017 ◽  
Vol 5 (1) ◽  
pp. 81-87
Author(s):  
Vishnuveni Murugan ◽  
Sivakumar Rathinavelu ◽  
Nandhitha Krishnadevaraj ◽  
Chandrasekaran Perumal

An experiment was conducted to study the effect of PGRs { gibberellic acid (10 ppm), brassinolide (0.5 ppm), salicylic acid (100 ppm), ascorbic acid (100 ppm), benzyl amino purine (5 ppm)} and nutrients { K2SO4 (0.5%) + FeSO4 (0.5%) + Borax (0.3%) mixture and 19:19:19 (1%) mixture} on growth, NR enzyme activity, proline, soluble protein content and yield of bhendi hybrid (COBh H 1) under saline condition. The treatments were given at 25 and 45 DAS as foliar spray. The results showed that, nitrate reductase activity, soluble protein and plant growth were reduced under saline condition where as proline content was increased compared to absolute control. Foliar application of PGRs and nutrients enhanced the NR activity, proline, soluble protein and plant growth under saline condition. Among the PGRs and nutrients, foliar application of salicylic acid (100 ppm) and brassinolide (0.5 ppm) showed the better performance to mitigate the effect of salinity.


2014 ◽  
Vol 42 (2) ◽  
pp. 398-404 ◽  
Author(s):  
Arezu MOVLUDI ◽  
Ali EBADI ◽  
Soodabeh JAHANBAKHSH ◽  
Mahdi DAVARI ◽  
Ghasem PARMOON

The effects of water deficit and nitrogen fertilizer were studied on antioxidant enzymes activity and quantum yield of barley. An experiment carried out in greenhouse in factorial subject based on a completely randomized design with three replications. Irrigation schedules imposed at three levels of 85%, 60% and 35% field capacity (FC), and nitrogen were applied in quantities of 40, 80 and 120 kg N ha-1. We determined Catalase (CAT), Peroxidase (POX) Polyphenol oxidase (PPO) activities, proline, chlorophyll and carotenoid content, quantum yield and grain yield. The results showed that severe stress (35% FC) increased the activities of CAT, POX and PPO enzymes and proline content, whereas the carotenoids, chlorophyll a and chlorophyll b decreased. Water deficiency caused the reduction in the quantum yield and the grain yield by 34%. Application of 80 kg of N during stress treatments resulted in higher enzyme activity and proline content. High amount of nitrogen reduced carotenoids, chlorophyll a, chlorophyll b, and in contrast, enhanced quantum yield. Application of 120 kg N ha-1 increased the yield up to 37% under mild stress (35% FC). Correlation coefficient and path coefficient showed that, grain yield was affected directly by amount of carotenoids and quantum yield.


2019 ◽  
Vol 34 (1) ◽  
pp. 31
Author(s):  
Endah Nurwahyuni ◽  
Eka Tarwaca Susila Putra

<p>Planting drought-resistance plants in terms of agronomy, such as induction of plant tolerance using calcium is assumed to be able to solve the climate anomaly problem. Calcium is known as an element that plays an essential role in determining the response of plant resistance to drought through biochemical activity. This study aimed to determine the role of calcium in changing photosynthesis activity in order to increase the resistance to drought stress. The treatment was arranged in factorial of 3 x 4 in a split plot Randomized Complete Block Design replicated three times. The first factor was the dose of calcium application consisted of 0 (control/without calcium), 0.04, 0.08 and 0.12 g. The second factor was the intensity of drought stress, which referred to the Fraction of Transpirable Soil Water method consisted of 1 (control/field capacity), 0.35 (moderate drought) and 0.15 (severe drought). The measurement data of stomatal aperture, Abscisic Acid (ABA) content, chlorophyll content, carotenoid content, proline content, nitrate reductase activity and photosynthesis rate that fulfill the assumption of homogeneity and normality were analyzed using variance at 95% accuracy and continued using DMRT. Moreover, regression analysis were determined of relationship between the treatment and parameters. The results revealed that drought resulted in a decline in leaf water potential and stomatal aperture. The effects of calcium on chlorophyll and carotenoid under drought stress could not be explained in this study. However, the application of calcium has a significant effect on decreased ABA, increased proline and nitrate reductase activity resulting in an increase in the photosynthetic rate of oil palm seeds in drought stress.</p>


Sign in / Sign up

Export Citation Format

Share Document