scholarly journals Effect of Pgrs and Nutrients on Growth, Nitrate Reductase Activity, Soluble Protein, Proline Content and Yield in Bhendi Hybrid Under Salinity

2017 ◽  
Vol 5 (1) ◽  
pp. 81-87
Author(s):  
Vishnuveni Murugan ◽  
Sivakumar Rathinavelu ◽  
Nandhitha Krishnadevaraj ◽  
Chandrasekaran Perumal

An experiment was conducted to study the effect of PGRs { gibberellic acid (10 ppm), brassinolide (0.5 ppm), salicylic acid (100 ppm), ascorbic acid (100 ppm), benzyl amino purine (5 ppm)} and nutrients { K2SO4 (0.5%) + FeSO4 (0.5%) + Borax (0.3%) mixture and 19:19:19 (1%) mixture} on growth, NR enzyme activity, proline, soluble protein content and yield of bhendi hybrid (COBh H 1) under saline condition. The treatments were given at 25 and 45 DAS as foliar spray. The results showed that, nitrate reductase activity, soluble protein and plant growth were reduced under saline condition where as proline content was increased compared to absolute control. Foliar application of PGRs and nutrients enhanced the NR activity, proline, soluble protein and plant growth under saline condition. Among the PGRs and nutrients, foliar application of salicylic acid (100 ppm) and brassinolide (0.5 ppm) showed the better performance to mitigate the effect of salinity.

Author(s):  
M. Tagore Naik ◽  
D. Srihari ◽  
A.V.D. Dorajeerao ◽  
K. Sasikala ◽  
K. Umakrishna ◽  
...  

2017 ◽  
Vol 14 (3) ◽  
pp. 671-681 ◽  
Author(s):  
Zhiguang Xu ◽  
Guang Gao ◽  
Juntian Xu ◽  
Hongyan Wu

Abstract. The development of golden tides is potentially influenced by global change factors, such as ocean acidification and eutrophication, but related studies are very scarce. In this study, we cultured a golden tide alga, Sargasssum muticum, at two levels of pCO2 (400 and 1000 µatm) and phosphate (0.5 and 40 µM) to investigate the interactive effects of elevated pCO2 and phosphate on the physiological properties of the thalli. Higher pCO2 and phosphate (P) levels alone increased the relative growth rate by 41 and 48 %, the net photosynthetic rate by 46 and 55 %, and the soluble carbohydrates by 33 and 62 %, respectively, while the combination of these two levels did not promote growth or soluble carbohydrates further. The higher levels of pCO2 and P alone also enhanced the nitrate uptake rate by 68 and 36 %, the nitrate reductase activity (NRA) by 89 and 39 %, and the soluble protein by 19 and 15 %, respectively. The nitrate uptake rate and soluble protein was further enhanced, although the nitrate reductase activity was reduced when the higher levels of pCO2 and P worked together. The higher pCO2 and higher P levels alone did not affect the dark respiration rate of the thalli, but together they increased it by 32 % compared to the condition of lower pCO2 and lower P. The neutral effect of the higher levels of pCO2 and higher P on growth and soluble carbohydrates, combined with the promoting effect on soluble protein and dark respiration, suggests that more energy was drawn from carbon assimilation to nitrogen assimilation under conditions of higher pCO2 and higher P; this is most likely to act against the higher pCO2 that caused acid–base perturbation via synthesizing H+ transport-related protein. Our results indicate that ocean acidification and eutrophication may not boost golden tide events synergistically, although each one has a promoting effect.


1995 ◽  
Vol 43 (1) ◽  
pp. 63-68 ◽  
Author(s):  
M.K. Ghosh ◽  
R.C. Srivastava

Foliar treatment with different concentrations of potassium chloride (KC1) to Quercus serrata seedlings resulted in higher levels of total chlorophyll, total sugars, soluble protein, and in vivo nitrate reductase activity in the leaves. Optimal concentration was found to be 5.0 mM KC1. The results with foliar applications were further verified with excised shoots dipped in KC1 and with leaves treated directly with KC1. Regression and correlation coefficients were analyzed, and a strong positive correlation was found between chlorophyll and total sugars, and between soluble protein and in vivo nitrate reductase activity.


Sign in / Sign up

Export Citation Format

Share Document