scholarly journals An Implementation of Natural Language Processing and Text Mining in Stroke Research

2021 ◽  
Vol 39 (3) ◽  
pp. 121-128
Author(s):  
Chulho Kim

Natural language processing (NLP) is a computerized approach to analyzing text that explores how computers can be used to understand and manipulate natural language text or speech to do useful things. In healthcare field, these NLP techniques are applied in a variety of applications, ranging from evaluating the adequacy of treatment, assessing the presence of the acute illness, and the other clinical decision support. After converting text into computer-readable data through the text preprocessing process, an NLP can extract valuable information using the rule-based algorithm, machine learning, and neural network. We can use NLP to distinguish subtypes of stroke or accurately extract critical clinical information such as severity of stroke and prognosis of patients, etc. If these NLP methods are actively utilized in the future, they will be able to make the most of the electronic health records to enable optimal medical judgment.

2021 ◽  
Author(s):  
Ye Seul Bae ◽  
Kyung Hwan Kim ◽  
Han Kyul Kim ◽  
Sae Won Choi ◽  
Taehoon Ko ◽  
...  

BACKGROUND Smoking is a major risk factor and important variable for clinical research, but there are few studies regarding automatic obtainment of smoking classification from unstructured bilingual electronic health records (EHR). OBJECTIVE We aim to develop an algorithm to classify smoking status based on unstructured EHRs using natural language processing (NLP). METHODS With acronym replacement and Python package Soynlp, we normalize 4,711 bilingual clinical notes. Each EHR notes was classified into 4 categories: current smokers, past smokers, never smokers, and unknown. Subsequently, SPPMI (Shifted Positive Point Mutual Information) is used to vectorize words in the notes. By calculating cosine similarity between these word vectors, keywords denoting the same smoking status are identified. RESULTS Compared to other keyword extraction methods (word co-occurrence-, PMI-, and NPMI-based methods), our proposed approach improves keyword extraction precision by as much as 20.0%. These extracted keywords are used in classifying 4 smoking statuses from our bilingual clinical notes. Given an identical SVM classifier, the extracted keywords improve the F1 score by as much as 1.8% compared to those of the unigram and bigram Bag of Words. CONCLUSIONS Our study shows the potential of SPPMI in classifying smoking status from bilingual, unstructured EHRs. Our current findings show how smoking information can be easily acquired and used for clinical practice and research.


Author(s):  
Lin Shen ◽  
Adam Wright ◽  
Linda S Lee ◽  
Kunal Jajoo ◽  
Jennifer Nayor ◽  
...  

Abstract Objective Determination of appropriate endoscopy sedation strategy is an important preprocedural consideration. To address manual workflow gaps that lead to sedation-type order errors at our institution, we designed and implemented a clinical decision support system (CDSS) to review orders for patients undergoing outpatient endoscopy. Materials and Methods The CDSS was developed and implemented by an expert panel using an agile approach. The CDSS queried patient-specific historical endoscopy records and applied expert consensus-derived logic and natural language processing to identify possible sedation order errors for human review. A retrospective analysis was conducted to evaluate impact, comparing 4-month pre-pilot and 12-month pilot periods. Results 22 755 endoscopy cases were included (pre-pilot 6434 cases, pilot 16 321 cases). The CDSS decreased the sedation-type order error rate on day of endoscopy (pre-pilot 0.39%, pilot 0.037%, Odds Ratio = 0.094, P-value < 1e-8). There was no difference in background prevalence of erroneous orders (pre-pilot 0.39%, pilot 0.34%, P = .54). Discussion At our institution, low prevalence and high volume of cases prevented routine manual review to verify sedation order appropriateness. Using a cohort-enrichment strategy, a CDSS was able to reduce number of chart reviews needed per sedation-order error from 296.7 to 3.5, allowing for integration into the existing workflow to intercept rare but important ordering errors. Conclusion A workflow-integrated CDSS with expert consensus-derived logic rules and natural language processing significantly reduced endoscopy sedation-type order errors on day of endoscopy at our institution.


Radiology ◽  
2002 ◽  
Vol 224 (1) ◽  
pp. 157-163 ◽  
Author(s):  
George Hripcsak ◽  
John H. M. Austin ◽  
Philip O. Alderson ◽  
Carol Friedman

Sign in / Sign up

Export Citation Format

Share Document