clinical decision support system
Recently Published Documents


TOTAL DOCUMENTS

912
(FIVE YEARS 339)

H-INDEX

30
(FIVE YEARS 8)

2022 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Vinu Sherimon ◽  
P.C. Sherimon ◽  
Rahul V. Nair ◽  
Renchi Mathew ◽  
Sandeep M. Kumar ◽  
...  

Introduction: Humankind is passing through a period of significant instability and a worldwide health catastrophe that has never been seen before. COVID-19 spread over the world at an unprecedented rate. In this context, we undertook a rapid research project in the Sultanate of Oman. We developed ecovid19 application, an ontology-based clinical decision support system (CDSS) with teleconference capability for easy, fast diagnosis and treatment for primary health centers/Satellite Clinics of the Royal Oman Police (ROP) of Sultanate of Oman.Materials and Methods: The domain knowledge and clinical guidelines are represented using ontology. Ontology is one of the most powerful methods for formally encoding medical knowledge. The primary data was from the ROP hospital's medical team, while the secondary data came from articles published in reputable journals. The application includes a COVID-19 Symptom checker for the public users with a text interface and an AI-based voice interface and is available in English and Arabic. Based on the given information, the symptom checker provides recommendations to the user. The suspected cases will be directed to the nearby clinic if the risk of infection is high. Based on the patient's current medical condition in the clinic, the CDSS will make suitable suggestions to triage staff, doctors, radiologists, and lab technicians on procedures and medicines. We used Teachable Machine to create a TensorFlow model for the analysis of X-rays. Our CDSS also has a WebRTC (Web Real-Time Communication system) based teleconferencing option for communicating with expert clinicians if the patient develops difficulties or if expert opinion is requested.Results: The ROP hospital's specialized doctors tested our CDSS, and the user interfaces were changed based on their suggestions and recommendations. The team put numerous types of test cases to assess the clinical efficacy. Precision, sensitivity (recall), specificity, and accuracy were adequate in predicting the various categories of patient instances.Conclusion: The proposed CDSS has the potential to significantly improve the quality of care provided to Oman's citizens. It can also be tailored to fit other terrifying pandemics.


2022 ◽  
Author(s):  
Sabrina Qassim ◽  
Grace L Golden ◽  
Dominique Slowey ◽  
Mary Sarfas ◽  
Kate Whitmore ◽  
...  

The objective of this paper is to discuss perceived clinical utility and impact on physician-patient relationship of a novel, artificial-intelligence (AI) enabled clinical decision support system (CDSS) for use in the treatment of adults with major depression. Patients had a baseline appointment, followed by a minimum of two appointments with the CDSS. For both physicians and patients, study exit questionnaires and interviews were conducted to assess perceived clinical utility, impact on patient-physician relationship, and understanding and trust in the CDSS. 17 patients consented to participate in the study, of which 14 completed. 86% of physicians (6/7) felt the information provided by the CDSS provided a more comprehensive understanding of patient situations and 71% (5/7) felt the information was helpful. 86% of physicians (6/7) reported the AI/predictive model was useful when making treatment decisions. 62% of patients (8/13) reported improvement in their care as a result of the tool. 46% of patients (6/13) felt the app significantly or somewhat improved their relationship with their physicians; 54% felt it did not change. 71% of physicians (5/7) and 62% of patients (8/13) rated they trusted the tool. Qualitative results are analyzed and presented. Findings suggest physicians perceived the tool as useful in conducting appointments and used it while making treatment decisions. Physicians and patients generally found the tool trustworthy, and it may have positive effects on physician-patient relationships.


2022 ◽  
Vol 31 (2) ◽  
pp. 1241-1256
Author(s):  
Thejovathi Murari ◽  
L. Prathiba ◽  
Kranthi Kumar Singamaneni ◽  
D. Venu ◽  
Vinay Kumar Nassa ◽  
...  

10.2196/23571 ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. e23571
Author(s):  
Lars Müller ◽  
Aditya Srinivasan ◽  
Shira R Abeles ◽  
Amutha Rajagopal ◽  
Francesca J Torriani ◽  
...  

Background There is a pressing need for digital tools that can leverage big data to help clinicians select effective antibiotic treatments in the absence of timely susceptibility data. Clinical presentation and local epidemiology can inform therapy selection to balance the risk of antimicrobial resistance and patient risk. However, data and clinical expertise must be appropriately integrated into clinical workflows. Objective The aim of this study is to leverage available data in electronic health records, to develop a data-driven, user-centered, clinical decision support system to navigate patient safety and population health. Methods We analyzed 5 years of susceptibility testing (1,078,510 isolates) and patient data (30,761 patients) across a large academic medical center. After curating the data according to the Clinical and Laboratory Standards Institute guidelines, we analyzed and visualized the impact of risk factors on clinical outcomes. On the basis of this data-driven understanding, we developed a probabilistic algorithm that maps these data to individual cases and implemented iBiogram, a prototype digital empiric antimicrobial clinical decision support system, which we evaluated against actual prescribing outcomes. Results We determined patient-specific factors across syndromes and contexts and identified relevant local patterns of antimicrobial resistance by clinical syndrome. Mortality and length of stay differed significantly depending on these factors and could be used to generate heuristic targets for an acceptable risk of underprescription. Combined with the developed remaining risk algorithm, these factors can be used to inform clinicians’ reasoning. A retrospective comparison of the iBiogram-suggested therapies versus the actual prescription by physicians showed similar performance for low-risk diseases such as urinary tract infections, whereas iBiogram recognized risk and recommended more appropriate coverage in high mortality conditions such as sepsis. Conclusions The application of such data-driven, patient-centered tools may guide empirical prescription for clinicians to balance morbidity and mortality with antimicrobial stewardship.


2021 ◽  
Vol 37 (S1) ◽  
pp. 21-22
Author(s):  
Carla Fernandez-Barceló ◽  
Elena Calvo-Cidoncha ◽  
Laura Sampietro-Colom

IntroductionIn the past decade, health technology assessment (HTA) has narrowed its scope to the analysis of mainly clinical and economic benefits. However, twenty-first century technology challenges require the need for more holistic assessments to obtain accurate recommendations for decision-making, as it was in HTA's foundations. VALues In Doing Assessments of health TEchnologies (VALIDATE) methodology approaches complex technologies holistically to provide a deeper understanding of the problem through analysis of the heterogeneity of stakeholders’ views, allowing for more comprehensive HTAs. This study aimed to assess a pharmaceutical clinical decision support system (CDSS) using VALIDATE.MethodsA systematic review of the empirical evidence on CDSS was conducted according to PRISMA guidelines. PubMed, the Cochrane Library, and Web of Science databases were searched for literature published between 2000 and 2020. Additionally, a review of grey literature and semi-structured interviews with different hospital stakeholders (pharmacists, physicians, computer engineers, etc.) were conducted. Content analysis was used for data integration.ResultsPreliminary literature results indicated consensus regarding the effectiveness of CDSS. Nevertheless, when including multistakeholder views, CDSS appeared to not be fully accepted in clinical practice. The main reasons for this appeared to be alert fatigue and disruption of workflow. Preliminary results based on information from the literature were contrasted with stakeholder interview responses.ConclusionsIncorporation of facts and stakeholder values into the problem definition and scoping for a health technology is essential to properly conduct HTAs. The lack of an inclusive multistakeholder scoping can lead to inaccurate information, and in this particular case to suboptimal CDSS implementation concerning decision-making for the technology being evaluated.


Sign in / Sign up

Export Citation Format

Share Document