scholarly journals Changes in soil microbial communities during litter decomposition

2016 ◽  
Vol 24 (2) ◽  
pp. 195-204 ◽  
Author(s):  
Shanshan Li ◽  
◽  
Zhengwen Wang ◽  
Junjie Yang
Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 338 ◽  
Author(s):  
Songze Wan ◽  
Zhanfeng Liu ◽  
Yuanqi Chen ◽  
Jie Zhao ◽  
Qin Ying ◽  
...  

Soil microorganisms play key roles in ecosystems and respond quickly to environmental changes. Liming and/or understory removal are important forest management practices and have been widely applied to planted forests in humid subtropical and tropical regions of the world. However, few studies have explored the impacts of lime application, understory removal, and their interactive effects on soil microbial communities. We conducted a lime application experiment combined with understory removal in a subtropical Eucalyptus L’Hér. plantation. Responses of soil microbial communities (indicated by phospholipid fatty acids, PLFAs), soil physico-chemical properties, and litter decomposition rate to lime and/or understory removal were measured. Lime application significantly decreased both fungal and bacterial PLFAs, causing declines in total PLFAs. Understory removal reduced the fungal PLFAs but had no effect on the bacterial PLFAs, leading to decreases in the total PLFAs and in the ratio of fungal to bacterial PLFAs. No interaction between lime application and understory removal on soil microbial community compositions was observed. Changes in soil microbial communities caused by lime application were mainly attributed to increases in soil pH and NO3–-N contents, while changes caused by understory removal were mainly due to the indirect effects on soil microclimate and the decreased soil dissolved carbon contents. Furthermore, both lime application and understory removal significantly reduced the litter decomposition rates, which indicates the lime application and understory removal may impact the microbe-mediated soil ecological process. Our results suggest that lime application may not be suitable for the management of subtropical Eucalyptus plantations. Likewise, understory vegetation helps to maintain soil microbial communities and litter decomposition rate; it should not be removed from Eucalyptus plantations.


2009 ◽  
Vol 39 (11) ◽  
pp. 2263-2271 ◽  
Author(s):  
A. Chatterjee ◽  
L.J. Ingram ◽  
G.F. Vance ◽  
P.D. Stahl

As forests develop, changes in soil organic matter quantity and quality affect both nutrient dynamics and microbial community structure. Litter decomposition and nitrogen mineralization in association with soil microbial communities were compared between 45- and 135-year-old lodgepole pine ( Pinus contorta var. latifolia (Englem.)) stands in southeastern Wyoming, USA. Compared with the 45-year-old stand, the 135-year-old stand was found to have greater live-tree biomass, litter decomposition rates (264 versus 135 mg·(g litter)–1·year–1), soil nitrification rates (0.38 versus 0.19 µg NO3–·(g soil)–1 after 265 days of field incubation), and total phospholipid fatty acid (PLFA) concentrations (25 versus 9.2 nmol·(g soil)–1 at 0–5 cm depth). Canonical correspondence analysis indicated that variation of PLFA profiles within the 45-year-old stand was explained by soil pH and bulk density, whereas soil process rates explained the distributions of PLFA profiles within the 135-year-old stand. The results of these studies indicate that stand age influences live-tree biomass and soil properties that can lead to changes in litter decomposition rates and soil microbial communities in lodgepole pine forests.


2020 ◽  
Author(s):  
Somak Chowdhury ◽  
Markus Lange ◽  
Ashish A Malik ◽  
Timothy Goodall ◽  
Jianbei Huang ◽  
...  

AbstractInteractions between plants and microorganisms strongly affect ecosystem functioning as processes of plant productivity, litter decomposition and nutrient cycling are controlled by both organisms. Though two-sided interactions between plants and microorganisms and between microorganisms and litter decomposition are areas of major scientific research, our understanding of the three-sided interactions of plant-derived carbon flow into the soil microbial community and their follow-on effects on ecosystem processes like litter decomposition and plant nutrient uptake remains limited. Therefore, we performed a greenhouse experiment with two plant communities differing in their ability to associate with arbuscular mycorrhizal fungi (AMF). By applying a 13CO2 pulse label to the plant communities and adding various 15N labelled substrate types to ingrowth cores, we simultaneously traced the flow of plant-derived carbon into soil microbial communities and the return of mineralized nitrogen back to the plant communities. We observed that net 13C assimilation by the rhizosphere microbial communities and their community composition not only depended on plant-AMF association but also type of substrate being decomposed. AMF-association resulted in lower net 13C investment into the decomposer community than absence of the association for similar 15N uptake. This effect was driven by a reduced carbon flow to fungal and bacterial saprotrophs and a simultaneous increase of carbon flow to AMF. Additionally, in presence of AMF association CN flux also depended on the type of substrate being decomposed. Lower net 13C assimilation was observed for decomposition of plant-derived and microorganism-derived substrates whereas opposite was true for inorganic nitrogen. Interestingly, the decomposer communities assembled in the rhizosphere were structured by both the plant community and substrate amendments which suggests existence of functional overlap between the two soil contexts. Moreover, we present preliminary evidence that AMF association helps plants access nutrients that are locked in bacterial and plant necromass at a lower carbon cost. Therefore, we conclude that a better understanding of ecosystem processes like decomposition can only be achieved when the whole plant-microorganism-litter context is investigated.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


Sign in / Sign up

Export Citation Format

Share Document