scholarly journals Improving the efficiency of distribution electric networks of railways based on the multi-agent mode management method

Vestnik IGEU ◽  
2019 ◽  
pp. 54-63
Author(s):  
V.T. Cheremisin ◽  
E.A. Tretyakov

With the increase in observability and controllability of regimes, the development of methods for managing distributed objects of the electrical network is becoming more and more important. The main research directions in smart grids are based on the theory of fuzzy sets, genetic algorithms, neural networks, stochastic control, spectral graph, bilinear matrix inequality constraints. They are aimed at solving multicriterion optimization problems of electric networks with distributed objects and are computationally-demanding and time-consuming. Meanwhile, the methods of multi-agent control of the power supply system based on the parallelization of information flows and coordination of the operation of distributed linear regulators are becoming more common. The purpose of this study is to develop methods for controlling the operating modes of smart distribution electric networks of railways using an agent-based approach for stabilizing voltages within specified limits and reducing electric power losses. This goal can be achieved by solving the problems of developing an algorithm for managing power flows based on the coordinated work of active and reactive power sources and principles of demand management of active consumers. The multi-agent power flow control was realized in the AnyLogic program, the simulation modeling of the electrical network modes was performed in Matlab Simulink with assumptions of linear characteristics of voltage loads. A method has been developed to control the operation modes of smart distribution electric networks of railways based on the presented power flow control algorithm, the hallmarks of which are the use of linearized equations for determining control actions in small increments, which allows high speed data analysis in real time without calculating steady-state modes with disturbances. The obtained simulation results prove the validity of power flow control methods for voltage stabilization based on multi-agent control and the possibility of their practical implementation on modern equipment in smart distribution networks of railways.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1627 ◽  
Author(s):  
Saher Javaid ◽  
Mineo Kaneko ◽  
Yasuo Tan

This paper discusses a structural property for a power system to continue a safe operation under power fluctuation caused by fluctuating power sources and loads. Concerns over global climate change and gas emissions have motivated development and integration of renewable energy sources such as wind and solar to fulfill power demand. The energy generated from these sources exhibits fluctuations and uncertainty which is uncontrollable. In addition, the power fluctuations caused by power loads also have the same consequences on power system. To mitigate the effects of uncontrollable power fluctuations, a power flow control is presented which allocates power levels for controllable power sources and loads and connections between power devices. One basic function for the power flow control is to balance the generated power with the power demand. However, due to the structural limitations, i.e., the power level limitations of controllable sources and loads and the limitation of power flow channels, the power balance may not be achieved. This paper proposes two theorems about the structural conditions for a power system to have a feasible solution which achieves the power balance between power sources and power loads. The discussions in this paper will provide a solid theoretical background for designing a power flow system which proves robustness against fluctuations caused by fluctuating power devices.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012034
Author(s):  
Divya Shende ◽  
Prashant Jagtap ◽  
Rutuja Hiware

Abstract Flexible FACTS system of AC transmission. FACTS Devices can regulate electricity flow, develop the transmission capacity for power management. UPFC is a multipurpose fact controller carried on design of the constant voltage source. As an electrical device UPFC for rapid reactive power adjustment on high voltage electricity transport grid. Unified power flow control (UPFC). The latest FACTS gadget is UPFC. This combines series and shunting compensator characteristics and enables Power reactive and response to be controlled. UPFC utilization reduces difficulties in power quality including voltage sink and voltage surge. This article addresses UPFC and also several novel topologies for FACTS controllers.


2017 ◽  
Vol 8 (1) ◽  
pp. 447-456 ◽  
Author(s):  
Angel Molina-Garcia ◽  
Rosa A. Mastromauro ◽  
Tania Garcia-Sanchez ◽  
Sante Pugliese ◽  
Marco Liserre ◽  
...  

2018 ◽  
Vol 138 (3) ◽  
pp. 219-226
Author(s):  
Takuma Takeuchi ◽  
Takehiro Imura ◽  
Daisuke Gunji ◽  
Hiroshi Fujimoto ◽  
Yoichi Hori

Author(s):  
A. Hernandez ◽  
M.A. Rodriguez ◽  
E. Torres ◽  
P. Eguia

2013 ◽  
Vol 1 (4) ◽  
pp. 17-27
Author(s):  
G.N. Sreenivas ◽  
◽  
A. Yashoda Devi ◽  
K. Suresh Kumar ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document