distributed objects
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 28)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Volodymyr Bezkorovainyi ◽  
Leonid Nefedov ◽  
Vladimir Russkin

The subject of research in the article is the topological structures of closed-loop logistics networks. The goal of the article is to increase the efficiency of centralized logistics networks by developing a mathematical model for a two-criteria problem of optimizing topological structures in the process of their reengineering. The article solves the following tasks: analysis of the current state of the problem of structural and topological optimization of logistics networks; formalization of the problem of optimization of logistics networks as geographically distributed objects; synthesis of objective functions of the mathematical model of a two-criterion optimization problem for centralized three-level topological structures of closed logistics networks at the reengineering stage; development of a system of constraints of the mathematical model of the problem of optimizing centralized three-level topological structures of closed logistics networks; a function for evaluating the overall utility of options based on the Kolmogorov-Gabor polynomial is offered. The following methods are used: methods of systems theory, methods of utility theory, optimization and operations research. The following results were obtained: the analysis of the current state of the problem of system optimization of logistics networks, mathematical models and methods for its solution was carried out; formalization of the problem of structural and topological optimization of logistics networks as geographically distributed objects; a mathematical model of a two-criterion task of reengineering of three-level topological structures of logistics networks in terms of costs and efficiency with integrated points of production and processing has been developed (originality). Conclusions: Based on the results of the analysis of the problem of optimizing the topological structures of logistics systems, it has been established that the problems of direct and reverse logistics are still considered as conditionally independent, which does not allow obtaining effective global solutions. In the context of expanding the network of consumers, changes in delivery volumes, the introduction of environmental restrictions, it is proposed to reengineer the networks, which provides for their radical redesign. The formulated statement and the developed mathematical model of a two-criterion (in terms of cost and efficiency) optimization problem for three-level topological structures for combined production and processing points will increase the efficiency of logistics networks with reverse flows by reducing the cost of reengineering (practical value).


2021 ◽  
Author(s):  
Karenleigh A. Overmann

Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them. Indeed, as argued here, it is the inclusion of multiple forms (distributed objects, fingers, single- and two-dimensional forms like pebbles and abaci, and written notations) that is the mechanism of numerical elaboration. Further, variety in employed forms explains at least part of the synchronic and diachronic variability that exists between and within cultural number systems. Material forms also impart characteristics like linearity that may persist in the form of knowledge and behaviors, ultimately yielding numerical concepts that are irreducible to and functionally independent of any particular form. Material devices used to represent and manipulate numbers also interact with language in ways that reinforce or contrast different aspects of numerical cognition. Not only does this interaction potentially explain some of the unique aspects of numerical language, it suggests that the two are complementary but ultimately distinct means of accessing numerical intuitions and insights. The potential inclusion of materiality in contemporary research in numerical cognition is advocated, both for its explanatory power, as well as its influence on psychological, behavioral, and linguistic aspects of numerical cognition.


Author(s):  
D. Vasilchenko ◽  
A. Budilovskaya

This article discusses the use of Internet architecture in centralized automated process control systems for the purpose of monitoring and managing geographically distributed objects. The hardware components of the proposed architecture are described and the required functions are formulated. The methods of implementing these functions of centralized control systems based on this architecture are proposed: using internal algorithms of SCADA systems, or using microprocessor subsystems. The difficulties that are likely to be encountered when implementing all the required functions in the system being developed are described.


Author(s):  
I.V. Asharina

This three-part paper analyzes existing approaches and methods of organizing failure- and fault-tolerant computing in distributed multicomputer systems (DMCS), identifies and provides rationale for a list of issues to be solved. We review the application areas of failure- and fault- tolerant control systems for complex network and distributed objects. The third part proceeds with the study of the problems of organizing failure- and fault-tolerant computing in distributed multicomputer systems (DMCS), carried out in parts I and II of this work, and deals with the issues related to the diagnosis of multiple faults. The paper describes the main differences in ensuring fault tolerance in systems with broadcast communication channels and point-to-point communication channels.


Author(s):  
I.V. Asharina

This three-part paper analyzes existing approaches and methods of organizing failure- and fault-tolerant computing in distributed multicomputer systems (DMCS), identifies and provides rationale for a list of issues to be solved. We review the application areas of failure- and fault- tolerant control systems for complex network and distributed objects. The second part further investigates the issues of organizing failure- and fault- tolerance in the DMCS. The systemic, functional, and test diagnostics are viewed as the basis for building unattended failure- and fault-tolerant systems. We introduce the concept of self-managed degradation (when the DMCS eventually proceeds to a safe shutdown at a critical level of degradation) as a means to increase the DMCS active life.


Author(s):  
Vladimir Beskorovainyi ◽  
Antonii Sudik

The subject of research in the article is the topological structures of closed logistics networks. The purpose of the work is to create a mathematical model and methods for solving problems of optimization of topological structures of centralized logistics networks in the process of reengineering, taking into account many topological and functional constraints. The article solves the following tasks: analysis of the current state of the problem of system optimization of logistics networks and methods of its solution; formalization of the problem of system optimization of logistics networks as territorially distributed objects; development of a mathematical model of the problem of optimization of centralized three-level topological structures of logistics networks at the stage of reengineering; development of a method for solving the problem of optimization of centralized three-level topological structures of logistics networks at the reengineering stage; estimation of time complexity of the method of optimization of centralized three-level topological structures of logistics networks. The following methods are used: methods of systems theory, methods of utility theory, optimization and operations research. The following results were obtained: analysis of the current state of the problem of system optimization of logistics networks and methods of its solution; the problem of system optimization of logistics networks as territorially distributed objects has been formalized; developed a mathematical model of the problem of reengineering three-level topological structures of logistics networks in terms of cost and efficiency for the case of combined production and processing points; methods of directed search of variants of construction of a logistic network which use procedures of coordinate optimization and modeling of evolution on the basis of genetic algorithm are developed; estimates of the accuracy and time complexity of optimization methods of centralized three-level topological structures of logistics networks are obtained. Conclusions: Based on the results of the study of methods for solving the problem, an approximation of their accuracy and time complexity was performed. In practice, this will allow you to choose a more efficient method for solving large-scale practical problems, based on the required accuracy, available computing and time resources. The method based on the coordinate optimization procedure has a significantly higher accuracy, but it is more complex from a computational point of view. The accuracy of the evolutionary method based on a genetic algorithm can be increased by increasing the number of iterations. The practical use of the proposed mathematical model and methods of reengineering the topological structures of centralized closed logistics systems by jointly solving problems for direct and reverse flows will reduce the cost of transport activities of companies. Keywords: closed logistics; logistics network; optimization; reengineering; structure; topology.


Author(s):  
Dr. Manish L Jivtode

Web service technology has emerged as a popular way for building distributed applications involving distributed databases. It is the next generation technology in the long journey from functions to objects to components to services. Today’s comparing SOAP as a wire protocol to the commonly used distributed object technologies and their wire protocols in use. SOAP makes use of openly available technologies that, when combined, specify a wire protocol. This protocol can be used to facilitate highly and ultra-distributed architecture. SOAP commonly uses the HTTP protocol to transport XML-encoded serialized method argument data from system to system. This serialized argument data is used on the remote end to execute the client’s method call on that system, rather than the client’s local system. This case study provides a more details comparison of the SOAP and Distributed objects.


Author(s):  
Juan Zheng ◽  
Lei Hong ◽  
Juanjuan Gu ◽  
Huimin Duan ◽  
Qian Zhang

In the engineering applications, the distribution of objects is mostly random. Therefore, scattering analysis of randomly distributed objects has been one of the important problems in broadband electromagnetic calculation field. To resolve the problem, the Asymptotic Waveform Evaluation technique in conjunction with Monte Carlo Method is presented. First, the stochastic distribution is modeled by the Monte Carlo Method, and then the Asymptotic Waveform Evaluation technique using Padé approximation is utilized to achieve the Radar Cross Section at a wide frequency band. Numerical results show that the Asymptotic Waveform Evaluation technique can solve the random distributed object problems efficiently and accurately.


Sign in / Sign up

Export Citation Format

Share Document