ANALYTICAL TECHNIQUE FOR DAMPED NONLINEAR OSCILLATORS HAVING GENERALIZED RATIONAL POWER RESTORING FORCE

2021 ◽  
Vol 130 (1) ◽  
pp. 25-41
Author(s):  
Chandita Urmi Ghosh ◽  
M. Alhaz Uddin
2013 ◽  
Vol 430 ◽  
pp. 14-21
Author(s):  
Ivana Kovacic

This work is concerned with single-degree-of-freedom conservative nonlinear oscillators that have a fixed restoring force, which comprises a linear term and an odd-powered nonlinear term with an arbitrary magnitude of the coefficient of nonlinearity. There are two cases of interest: i) non-isochronous, when the system has an amplitude-dependent frequency and ii) isochronous, when the frequency of oscillations is constant (amplitude-independent). The first case is associated with the constant coefficient of the kinetic energy, while the frequency-amplitude relationship and the solution for motion need to be found. To that end, the equation of motion is solved by introducing a new small expansion parameter and by adjusting the Lindstedt-Poincaré method. In the second case, the condition for the frequency of oscillations to be constant is derived in terms of the expression for the position-dependent coefficient of the kinetic energy. The corresponding solution for isochronous oscillations is obtained. Numerical verifications of the analytical results are also presented.


2014 ◽  
Vol 3 (4) ◽  
Author(s):  
Najeeb Alam Khan ◽  
Khan Nasir Uddin ◽  
Khan Nadeem Alam

AbstractThe objective of this paper is to present an investigation to analyze the vibration of a conservative nonlinear oscillator in the form u" + lambda u + u^(2n-1) + (1 + epsilon^2 u^(4m))^(1/2) = 0 for any arbitrary power of n and m. This method converts the differential equation to sets of algebraic equations and solve numerically. We have presented for three different cases: a higher order Duffing equation, an equation with irrational restoring force and a plasma physics equation. It is also found that the method is valid for any arbitrary order of n and m. Comparisons have been made with the results found in the literature the method gives accurate results.


2008 ◽  
Vol 77 (6) ◽  
pp. 065004 ◽  
Author(s):  
A Beléndez ◽  
E Gimeno ◽  
E Fernández ◽  
D I Méndez ◽  
M L Alvarez

2008 ◽  
Vol 314 (3-5) ◽  
pp. 775-782 ◽  
Author(s):  
A. Beléndez ◽  
D.I. Méndez ◽  
T. Beléndez ◽  
A. Hernández ◽  
M.L. Álvarez

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Fatima Riaz ◽  
Nadeem Alam Khan

We applied an approach to obtain the natural frequency of the generalized Duffing oscillatoru¨+u+α3u3+α5u5+α7u7+⋯+αnun=0and a nonlinear oscillator with a restoring force which is the function of a noninteger power exponent of deflectionu¨+αu|u|n−1=0. This approach is based on involved parameters, initial conditions, and collocation points. For any arbitrary power ofn, the approximate frequency analysis is carried out between the natural frequency and amplitude. The solution procedure is simple, and the results obtained are valid for the whole solution domain.


1967 ◽  
Vol 34 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Eugene Sevin ◽  
Walter Pilkey

Linear, nonlinear, and dynamic programming formulations are developed for the solution of the min-max response of a single-degree-of-freedom dynamic system with incompletely prescribed input functions. The problem is: Given an oscillator whose equation of motion is mx¨ + g(x, x˙) = f(t), subject to stated initial conditions, and acted upon by a forcing function, f(t), which is nonnegative, and of specified finite duration and total impulse, find the particular forces which produce the least possible maximum displacement of the oscillator, and find this bounding value. Previously, Sevin developed an analytical technique for the solution which is inherently dependent upon a linear undamped form for the restoring force g(x, x˙). In the current work, an alternate statement of the problem is presented which lends itself to tractable computational formulations involving less stringent restrictions on g(x, x˙). Results obtained by dynamic and linear programming for specified forms of g(x, x˙) are given as functions of load duration.


Sign in / Sign up

Export Citation Format

Share Document