Growth of the edible medicinal native species Crithmum maritimum L. on an extensive urban green roof is affected by substrate type and depth

2021 ◽  
pp. 501-508
Author(s):  
A.N. Martini ◽  
M. Papafotiou ◽  
K. Evangelopoulos
2021 ◽  
Author(s):  
Sydney Gonsalves ◽  
Olyssa Starry ◽  
Alexander Szallies ◽  
Stephan Brenneisen

Abstract The value of urban green spaces to biodiversity conservation depends on the design and management. The importance of habitat quality and complexity to species diversity has led to the suggestion that habitat design elements—varied substrate depth, greater plant diversity, logs or stones—would support invertebrate diversity on green roofs. To evaluate this possibility, we conducted pit-fall trap sampling on three green roofs of simple design (intended primarily for stormwater management), three habitat roofs, and five ground-level green spaces, in the Portland, Oregon metropolitan area. Beetles (Coleoptera) were sampled as representatives of total invertebrate diversity. Diversity was compared using sample coverage and Hill numbers to account for differences in sample intensity and fundamental differences in species diversity. Both habitat roofs and ground sites consisted of just over 20% native species, while stormwater roofs had about 5% native species, all of which were considered pests. We collected a greater abundance of beetles on the ground compared to roof sites like others have shown. However, when sample completeness is taken into account, habitat roofs had greater Shannon diversity compared to both ground and stormwater roof sites. Habitat roofs had the fewest dominant species representing 5% or more of total abundance, but also the lowest percent of species represented by singletons (27%). These results indicate that green roofs can support different beetle communities compared to those present at ground-level urban green spaces; our results also support previous findings that biodiverse design can reliably increase green roof diversity compared to more simply designed roofs.


2017 ◽  
Vol 7 (7) ◽  
pp. 2357-2369 ◽  
Author(s):  
Yann Dusza ◽  
Sébastien Barot ◽  
Yvan Kraepiel ◽  
Jean-Christophe Lata ◽  
Luc Abbadie ◽  
...  

HortScience ◽  
2013 ◽  
Vol 48 (10) ◽  
pp. 1327-1333 ◽  
Author(s):  
Maria Papafotiou ◽  
Niki Pergialioti ◽  
Lamprini Tassoula ◽  
Ioannis Massas ◽  
Georgios Kargas

Green roofs could be a way to increase vegetation in the center of old Mediterranean cities. The need for conservation of local character and biodiversity requires the use of native plant species, whereas the deficiency of water, particularly in semiarid regions, requires the use of species with reduced irrigation needs. Moreover, the aged buildings lead to the use of lightweight green roof constructions. Therefore, research was undertaken to investigate the possibility of using three Mediterranean aromatic xerophytes, Artemisia absinthium L., Helichrysum italicum Roth., and H. orientale L., at an extensive green roof in Athens, Greece. Simultaneously, the possibility of using locally produced grape marc compost was investigated. Substrate type and depth and irrigation frequency effects on growth of these species were studied. Rooted cuttings were planted mid-May in plastic containers with a green roof infrastructure fitted (moisture retention and protection of the insulation mat, drainage layer, and filter sheet) and placed on a fully exposed third floor flat roof at the Agricultural University of Athens. Two types of substrates were used, grape marc compost:soil:perlite (2:3:5, v/v) and peat:soil:perlite (2:3:5, v/v, as a control), as well as two substrate depths, 7.5 (shallow) and 15 cm (deep), and two irrigation frequencies, sparse (5 or 7 days in shallow and deep substrate, respectively) and normal (3 or 5 days in shallow and deep substrate, respectively). Increased contents of macroelements, total phosphorus (P) and potassium (K) in particular, were recorded in the compost-amended substrate, whereas both substrates had similar physical properties. Plant growth was recorded from May to October. The deep compost-amended substrate, independent of irrigation frequency, resulted in taller plants with bigger diameter and aboveground dry weight in all species. However, a remarkable result was that shallow compost-amended substrate with sparse irrigation resulted in similar or even bigger plant growth of all plant species compared with deep peat-amended substrate with normal irrigation. Thus, all three species were found suitable for use in Mediterranean extensive or semi-intensive green roofs, whereas the use of grape marc compost in the substrate allowed for less water consumption and the reduction of substrate depth without restriction of plant growth at the establishment phase and the first period of drought.


Phyton ◽  
2018 ◽  
Vol 87 (1) ◽  
pp. 252-259
Author(s):  
S醤chez J ◽  
J S醗nz Mata ◽  
J Flores ◽  
E Jurado ◽  
E Estrada Castill髇 ◽  
...  

HortScience ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 391-396 ◽  
Author(s):  
Michael A. Monterusso ◽  
D. Bradley Rowe ◽  
Clayton L. Rugh

Although the economic, environmental, and aesthetic benefits of green roofs have been recognized for decades, research quantifying these benefits has been limited—particularly in the U.S. Green roof usage and research is most prevalent in Germany, but can also be seen in several other European countries and Canada. If green roof installations are to be successful in Michigan and the rest of the U.S., then a better understanding of what specific taxa will survive and thrive under harsh rooftop conditions in this geographic area is required. Nine simulated rooftop platforms containing three commercially available drainage systems were installed at Michigan State University. Eighteen Michigan native plants planted as plugs and nine Sedum spp. planted as either seed or plugs were evaluated over three years for growth, survival during both establishment and overwintering, and visual appearance. All Sedum spp. tested were found to be suitable for use on Midwestern green roofs. Of the eighteen native plant taxa tested, Allium cernuum L., Coreopsis lanceolata L., Opuntia humifosa Raf., and Tradescantia ohiensis L. are suitable for use on unirrigated extensive green roofs in Michigan. If irrigation is available, then other native species are potential selections.


Sign in / Sign up

Export Citation Format

Share Document