scholarly journals Synthesis and Characterization of Waterborne Polyurethane for Water Resistance

2017 ◽  
Vol 18 (1) ◽  
pp. 8-12
Author(s):  
Min Ji Choi ◽  
Boo Young Jeong ◽  
Jung Mi Cheon ◽  
Kuenbyeol Park ◽  
Jae Hwan Chun
2014 ◽  
Vol 513-517 ◽  
pp. 251-254 ◽  
Author(s):  
Zheng Xiang Wang ◽  
Ji Tong Yuan ◽  
Qi Long Liu ◽  
Xi Mei Xiao ◽  
Yun Hua Li ◽  
...  

A novel waterborne polyurethane (WPU) modified by tung oil was prepared with 2,4-tolylene diisocyanate, polyethylene glycol, dimethylol propinic acid, 1,4-butanedilo as main materials via acetone process. The structure of WPU molecule was characterized by FT-IR. Adhesive behavior for non-polar and/or low surface energy soft packing films was studied. Water resistance of films were evaluated by water contact angle and water uptake and thermal properties determined by thermal analysis instruments. The results show that the modified WPU films have good water and heat resistance. Both of modified WPUs or not have good adherence on BOPP films.


2009 ◽  
Vol 79-82 ◽  
pp. 1055-1058
Author(s):  
Sui Lian Luo ◽  
Chao Dong Liu ◽  
Guo Fei Gong ◽  
Hei Ping Lai ◽  
Wen Zhong Kong

In this work, PDMS modified PU was synthesized using two-stage method to improve water resistance and weather resistance in the waterborne polyurethane was investigated. It was found that the absorbed water content decreased with increasing PDMS content in polyurethane. It was also found that PDMS modified polyurethane had better solvent resistance than unmodified polyurethane. The structure incorporated the PDMS into the soft segment of polyurethane chains was confirmed by FTIR. The phase separation increased by increasing PDMS content and was confirmed by DSC. The particle size of the dispersions increased and tensile strength and hardness decreased with the increase of PDMS content. Furthermore, with the improved water resistance and elongation, it was hoped that the modified polyurethane could be used as wood coatings superior to the solvent-borne systems.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1018
Author(s):  
Massimo Marcioni ◽  
Jenny Alongi ◽  
Elisabetta Ranucci ◽  
Mario Malinconico ◽  
Paola Laurienzo ◽  
...  

The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.


2017 ◽  
Vol 135 (3) ◽  
pp. 45715 ◽  
Author(s):  
Nathapong Sukhawipat ◽  
Nitinart Saetung ◽  
Jean-Francois Pilard ◽  
Sophie Bistac ◽  
Anuwat Saetung

2018 ◽  
Vol 47 (4) ◽  
pp. 290-299 ◽  
Author(s):  
Sainan Zhang ◽  
Xiankai Jiang

Purpose The purpose of this paper is to synthesize and characterize a series of two-component aromatic waterborne polyurethane (2K-WPU) which is composed of non-ionic and anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. Design/methodology/approach The polyisocyanate aqueous dispersion was synthesized through non-ionic and anionic hydrophilic modification procedures. The values of the hydrogen bonding index (HBI) and molecule structures of WPU were obtained by Fourier transform infrared (FTIR). The thermal, mechanical and water resistance properties of 2K-WPU films were investigated. Findings The appearance of non-ionic polyisocyanate aqueous dispersion and anionic polyisocyanate aqueous dispersion was colorless translucent pan blue and yellow opaque emulsions, respectively. FTIR not only showed that 2K-WPU was obtained from the polymerization of polyisocyanate component and polyhydroxy component by polymerization but also showed that the content of hydrogen bondings of anionic 2K-WPU (WPU 2) was higher than non-ionic 2K-WPU (WPU 1). The glass-transition temperature (Tg), storage modulus and water resistance of WPU 2 were higher than WPU1, whereas the thermal stability of WPU1 was better than WPU 2. Practical implications The investigation established a method to prepare a series of 2K-WPU which was composed of non-ionic or anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. The prepared 2K-WPU film could be applied as substrate resin material in the field of waterborne coating. Originality/value The paper established a method to synthesize a series of 2K-WPU. The effect of HBI value and the molecule structure of soft segment on the thermal stability, mechanical and water resistance properties of 2K-WPU films were studied.


2012 ◽  
Vol 30 (2) ◽  
pp. 488-493 ◽  
Author(s):  
Misbah Sultan ◽  
Haq Nawaz Bhatti ◽  
Mohammad Zuber ◽  
Mehdi Barikani

Sign in / Sign up

Export Citation Format

Share Document