wood coatings
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 35)

H-INDEX

18
(FIVE YEARS 3)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Kent Davis ◽  
Scott Leavengood ◽  
Jeffrey J. Morrell

Wood exposed in exterior applications degrades and changes color due to weathering and fungal growth. Wood coatings can reduce the effects of weathering by reducing the damaging effects of ultraviolet light, reducing water absorption, and slowing fungal growth on the surface. Coating performance depends on the blend of resins, oils, and pigments and varies considerably among different wood species and conditions. Specific information describing expected service for different wood species and exposure conditions is not commonly available; certain combinations may work well in one climate or on one timber species, but underperform elsewhere. This study compared the performance of three industrial wood coatings on two wood species for two temperate climates under natural weathering conditions. Most of the coatings/species combinations lost their protective properties within 12 to 15 months; however, fungal growth was more prevalent at the wetter site than at the drier site for several combinations. Film-forming coatings often peeled and cracked, while penetrating coatings weathered and changed color relatively uniformly during the study. While no coating was completely effective, the results illustrate the benefits of using coatings that promote the development of natural, uniform-patinaed wood surfaces. The findings also guide coating maintenance programs for mass timber structures exposed to natural weathering conditions.


2022 ◽  
Vol 162 ◽  
pp. 106522
Author(s):  
Patrycja Hochmańska-Kaniewska ◽  
Dominika Janiszewska ◽  
Tomasz Oleszek
Keyword(s):  

2021 ◽  
Vol 14 (6) ◽  
pp. 499-507
Author(s):  
J Jusic ◽  
S Tamantini ◽  
M Romagnoli ◽  
V Vinciguerra ◽  
E Di Mattia ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 56
Author(s):  
Xiaoxing Yan ◽  
Wenting Zhao ◽  
Lin Wang

The fluorane thermochromic microcapsules and waterborne acrylic resin microcapsules were added into waterborne coatings at the same time to prepare intelligent waterborne coating film with dual functions of color change and self-repairing. The coating film prepared by adding 15.0% fluorane microcapsules and 5.0% waterborne acrylic resin microcapsules to the primer at the same time had better comprehensive properties. At this time, the coating film changed from yellow to colorless. The repair rate of the coating film was 58.4%. When the temperature was lower than 32 °C, waterborne acrylic resin microcapsules can improve the thermochromic performance of the coating film with fluorane microcapsules. Waterborne acrylic resin microcapsules can alleviate the color change of coating film with fluorane microcapsules. The fluorane microcapsules can improve the self-repairing performance of coating film with waterborne acrylic resin microcapsules. The results lay a theoretical and technical foundation for multifunctional coating film.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saeid Nikafshar ◽  
Mojgan Nejad

Abstract Susceptibility of wood to UV degradation decreases the service life of wood products outdoors. Organic UV absorbers (UVAs) and hindered amine light stabilizers (HALSs), as well as inorganic UVAs, are added to coatings to improve the UV stability of coated-wood products. Although about 85% of UV radiation is absorbed by lignin in the wood, it is unclear which UV stabilizers can minimize lignin degradation. In this study, the photodegradation of softwood organosolv lignin was monitored over 35 days of UV exposure. Changes in lignin properties were assessed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR). It was found that the aromatic rings of lignin underwent significant degradation, resulting in increased glass transition temperature and molecular weight of lignin. Subsequently, 18 different additives were mixed with lignin and exposed to UV irradiation. The analysis of samples before and after UV exposure with FTIR revealed that inorganic UVAs (cerium oxide and zinc oxide) and a mixture of organic UVAs and HALSs (T-479/T-292, T-5248, and T-5333) were the most effective additives in reducing lignin degradation. This study can help coating scientists to formulate more durable transparent exterior wood coatings.


Author(s):  
Dan Rosu ◽  
Fanica R. Mustata ◽  
Liliana Rosu ◽  
Cristian-Dragos Varganici

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4005
Author(s):  
Chia-Wei Chang ◽  
Jyun-Ya Liao ◽  
Kun-Tsung Lu

The manufacture and properties of waterborne UV-cured coatings (WUV coatings) by acetone process based on urushiol for wood finishing were investigated. Firstly, epoxide urushiol (EU) was prepared by reacting urushiol with epichlorohydrin. Secondly, the EU was reacted with acrylic acid to obtain acrylic epoxide urushiol (AEU). Next, the prepolymers were synthesized by the reaction of AEU, 2,2-Bis(hydroxymethyl)propionic acid (DMPA), and isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI), respectively, using acetone as a solvent. The prepolymers were further neutralized by triethylamine (TEA) to obtain ionomers and dispersed in the water. After removing the acetone by vacuum distillation, the polyurethane dispersions (PUDs) were obtained. Finally, the WUV coatings were performed by adding a photoinitiator (Irgacure 2959). The products in the synthesized processes and the properties of the WUV coatings were examined. The results showed that the EU, AEU, prepolymers, and ionomers could be synthesized stably. The PUDs synthesized by the IPDI and HDI had a similar solid content of 25.2% and 26.2%, and similar pH values of 7.8 and 7.6. However, the IPDI-containing PUD displayed lower viscosity, smaller particle size, and a more even polydispersity index. The IPDI-containing WUV film displayed a higher hardness, gloss, and lightfastness. The HDI-containing WUV film possessed superior impact resistance. Both IPDI-containing and HDI-containing WUV films showed excellent adhesion, bending resistance, and mass retention, and demonstrated a potential for wood finishing.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Kathryn L. Harris ◽  
Elizabeth S. Collier ◽  
Lisa Skedung ◽  
Mark W. Rutland

AbstractImproving the tactile aesthetics of products that can be described as touch intensive is an increasing priority within many sectors, including the furniture industry. Understanding which physical characteristics contribute to the haptic experience of a surface, and how, is therefore highly topical. It has earlier been shown that both friction and topography affect tactile perception. Thus, two series of stimuli have been produced using standard coating techniques, with systematic variation in (physical) friction and roughness properties. This was achieved through appropriate selection of matting agents and resins. The stimuli sets were then evaluated perceptually to determine the extent to which discrimination between pairs of surfaces followed the systematic materials variation. In addition to investigating the role of the physical properties in discrimination of the surfaces, their influence on perceived pleasantness and naturalness was also studied. The results indicate that changes in tactile perception can be understood in terms of friction and roughness, and that varying the matting agents (topography) and resins (material properties) in the coatings provide the controlling factors for furniture applications. Perceived pleasantness is associated with low friction and smoother topography, whilst perceived naturalness is found to be described by an interaction between tactile friction and the average maximum peak height of the surface features. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document