scholarly journals Multi-lead ECG Compression Based on Compressive Sensing

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Javad Afshar Jahanshahi

Compressed Sensing (CS) has been considered a very effective means of reducing energy consumption at the energy-constrained wireless body sensor networks for monitoring the multi-lead Electrocardiogram (MECG) signals. This paper develops the compressed sensing theory for sparse modeling and effective multi-channel ECG compression. A basis matrix with Gaussian kernels is proposed to obtain the sparse representation of each channel, which showed the closest similarity to the ECG signals. Thereafter, the greedy orthogonal matching pursuit (OMP) method is used to obtain the sparse representation of the signals. After obtaining the sparse representation of each ECG signal, the compressed sensing theory could be used to compress the signals as much as possible. Following the compression, the compressed signal is reconstructed utilizing the greedy orthogonal matching pursuit (OMP) optimization technique to demonstrate the accuracy and reliability of the algorithm. Moreover, as the wavelet basis matrix is another sparsifying basis to sparse representations of ECG signals, the compressed sensing is applied to the ECG signals using the wavelet basis matrix. The simulation results indicated that the proposed algorithm with Gaussian basis matrix reduces the reconstruction error and increases the compression ratio.

2012 ◽  
Vol 457-458 ◽  
pp. 1305-1309
Author(s):  
Yong Ting Li ◽  
Xiao Yan Chen ◽  
Yue Wen Liu

Sparse decompression is a new theory for signal processing, having the advantage in that the base (dictionary) used in this theory is over-complete, and can reflect the nature of signa1. So the sparse decompression of signal can get sparse representation, which is very important in data compression. In this paper, a novel ECG compression method for multi-channel ECG signals was introduced based on the Simultaneous Orthogonal Matching Pursuit (S-OMP). The proposed method decomposes multi-channel ECG signals simultaneously into different linear expansions of the same atoms that are selected from a redundant dictionary, which is constructed by Hermite fuctions and Gobar functions in order to the best match the characteristic of the ECG waveform. Compression performance has been tested using a subset of multi-channel ECG records from the St.-Petersburg Institute of Cardiological Technics database, the results demonstrate that much less atoms are selected to present signals and the compression ratio of Multi-channel ECG can achieve better performance in comparison to Simultaneous Matching Pursuit (SMP).


2019 ◽  
Vol 55 (17) ◽  
pp. 959-961
Author(s):  
Liyang Lu ◽  
Wenbo Xu ◽  
Yupeng Cui ◽  
Yifei Dang ◽  
Siye Wang

Sign in / Sign up

Export Citation Format

Share Document