compression performance
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 169)

H-INDEX

14
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Matheus Brendon Francisco ◽  
João Luiz Junho Pereira ◽  
Lucas Antonio de Oliveira ◽  
Sebastião Da Cunha ◽  
Guilherme Ferreira Gomes

Abstract The optimization of five different responses of an auxetic model was considered: mass; critical buckling load under compression effort; natural frequency; Poisson’s ratio; and failure load. The Response Surface Methodology was applied, and a new meta-heuristic of optimization called the Multi-Objective Lichtenberg Algorithm was used to find the optimized configuration of the model. It was possible to increase the failure load by 26,75% in compression performance optimization. Furthermore, in the optimization of modal performance, it was possible to increase the natural frequency by 37.43%. Finally, all 5 responses analyzed simultaneously were optimized. In this case, it was possible to increase the critical buckling load by 42.55%, the failure load by 28.70% and reduce the mass and Poisson’s ratio by 15.97% and 11%, respectively. This paper shows something unprecedented in the literature to date when evaluating in a multi-objective optimization problem, the compression and modal performance of an auxetic reentrant model.


Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 608-621
Author(s):  
Jianyang Xue ◽  
Xuanwen Liang ◽  
Chenwei Wu ◽  
Dejun Song ◽  
Liangjie Qi

Author(s):  
T. Satish Kumar ◽  
S. Jothilakshmi ◽  
Batholomew C. James ◽  
M. Prakash ◽  
N. Arulkumar ◽  
...  

In the present digital era, the exploitation of medical technologies and massive generation of medical data using different imaging modalities, adequate storage, management, and transmission of biomedical images necessitate image compression techniques. Vector quantization (VQ) is an effective image compression approach, and the widely employed VQ technique is Linde–Buzo–Gray (LBG), which generates local optimum codebooks for image compression. The codebook construction is treated as an optimization issue solved with utilization of metaheuristic optimization techniques. In this view, this paper designs an effective biomedical image compression technique in the cloud computing (CC) environment using Harris Hawks Optimization (HHO)-based LBG techniques. The HHO-LBG algorithm achieves a smooth transition among exploration as well as exploitation. To investigate the better performance of the HHO-LBG technique, an extensive set of simulations was carried out on benchmark biomedical images. The proposed HHO-LBG technique has accomplished promising results in terms of compression performance and reconstructed image quality.


2021 ◽  
Vol 116 ◽  
pp. 131-140
Author(s):  
Grzegorz Kowaluk ◽  
Aleksandra Jeżo

Compression strength-focused properties of wood composites induced by structure. The aim of the following study was to examine the contractual compression strength and modulus of elasticity when compressing (MOEC) of three different wood composites with various structure types: softwood (coniferous) plywood, OSB and laminated particleboard 24 mm thick. The biggest MOEC value was performed by the particleboard laminated 24 mm MOEC equalling 70.00 N/mm2. The second was found by the OSB panels, equalling 63.03 N/mm2. Last, but with MOEC value close to OSB, was softwood plywood with MOEC of 62.44 N/mm2. The lowest compression strength was observed by OSB samples, with a value of 2.75 N/mm2. The second lowest value has been performed by coniferous plywood (2.80 N/mm2). The highest compression strength occurred by the particleboard laminated 24 mm, equalling 3.31 N/mm2. Density shares and density profiles of the samples were also analysed, all of the examined composites performed U-shaped density profile The results of the study showed that there is no significant correlation between density and obtained parameters under compression. Observation of density share let the Authors conclude conversely than the results showed. It is supposed that the key factor affecting the compression performance of samples was the adhesive area and solid glue content within the composites. It is assumed that the bigger total contact surface of wood particles coated with adhesive resin, so the sum of the effective (gluing particles) surfaces of the adhesive joint is the better mechanical properties can be performed. This is why the laminated particleboard gave the best mechanical properties, while the worst were observed by the softwood plywood.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (11) ◽  
pp. 673-679
Author(s):  
KYLE DUNNO ◽  
CHANGFENG GE ◽  
GLENN ROGERS ◽  
STEVE JOHNSON

Environmental scaling factors estimate a corrugated container’s ability to withstand various conditions it will encounter during the storage and distribution process. In this project, we examined the compressive resistance of unitized loads using differing pallet stacking patterns. To simulate real-world failure scenarios in our laboratory tests, we used two different nominal board grades of single-wall C-flute regular slotted containers loaded with a plywood panel and bagged salt to direct the failure location to the bottom of the stack. Our results showed that the columnar aligned pattern provided the greatest compressive resistance and the interlocked stacking arrangement yielded the lowest of the patterns evaluated. Based on the study results, we calculated box compression retention multipliers for each pattern and compared them to scaling factors published by the Fibre Box Association.


Sign in / Sign up

Export Citation Format

Share Document