Accuracy of the Explicit Planar Free-Surface Boundary Condition Implemented in a Fourth-Order Staggered-Grid Velocity-Stress Finite-Difference Scheme

2001 ◽  
Vol 91 (3) ◽  
pp. 617-623 ◽  
Author(s):  
E. Gottschammer
Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. T1-T9 ◽  
Author(s):  
Chong Zeng ◽  
Jianghai Xia ◽  
Richard D. Miller ◽  
Georgios P. Tsoflias

Rayleigh waves are generated along the free surface and their propagation can be strongly influenced by surface topography. Modeling of Rayleigh waves in the near surface in the presence of topography is fundamental to the study of surface waves in environmental and engineering geophysics. For simulation of Rayleigh waves, the traction-free boundary condition needs to be satisfied on the free surface. A vacuum formulation naturally incorporates surface topography in finite-difference (FD) modeling by treating the surface grid nodes as the internal grid nodes. However, the conventional vacuum formulation does not completely fulfill the free-surface boundary condition and becomes unstable for modeling using high-order FD operators. We developed a stable vacuum formulation that fully satisfies the free-surface boundary condition by choosing an appropriate combination of the staggered-grid form and a parameter-averaging scheme. The elastic parameters on the topographic free surface are updated with exactly the same treatment as internal grid nodes. The improved vacuum formulation can accurately and stably simulate Rayleigh waves along the topographic surface for homogeneous and heterogeneous elastic models with high Poisson’s ratios ([Formula: see text]). This method requires fewer grid points per wavelength than the stress-image-based methods. Internal discontinuities in a model can be handled without modification of the algorithm. Only minor changes are required to implement the improved vacuum formulation in existing 2D FD modeling codes.


Geophysics ◽  
1986 ◽  
Vol 51 (12) ◽  
pp. 2247-2249 ◽  
Author(s):  
John E. Vidale ◽  
Robert W. Clayton

Two of the persistent problems in finite‐difference solutions of the elastic wave equation are the limited stability range of the free‐surface boundary condition and the boundary condition’s treatment of lateral variations in velocity and density. The centered‐difference approximation presented by Alterman and Karal (1968), for example, remains stable only for β/α greater than 0.30, where β and α are the shear [Formula: see text] and compressional [Formula: see text] wave velocities. The one‐sided approximation (Alterman and Rotenberg, 1969) and composed approximation (Ilan et al., 1975) have similar restrictions. The revised‐composed approximation of Ilan and Loewenthal (1976) overcomes this restriction, but cannot handle laterally varying media properly.


Geophysics ◽  
1988 ◽  
Vol 53 (11) ◽  
pp. 1425-1436 ◽  
Author(s):  
Alan R. Levander

I describe the properties of a fourth‐order accurate space, second‐order accurate time, two‐dimensional P-SV finite‐difference scheme based on the Madariaga‐Virieux staggered‐grid formulation. The numerical scheme is developed from the first‐order system of hyperbolic elastic equations of motion and constitutive laws expressed in particle velocities and stresses. The Madariaga‐Virieux staggered‐grid scheme has the desirable quality that it can correctly model any variation in material properties, including both large and small Poisson’s ratio materials, with minimal numerical dispersion and numerical anisotropy. Dispersion analysis indicates that the shortest wavelengths in the model need to be sampled at 5 gridpoints/wavelength. The scheme can be used to accurately simulate wave propagation in mixed acoustic‐elastic media, making it ideal for modeling marine problems. Explicitly calculating both velocities and stresses makes it relatively simple to initiate a source at the free‐surface or within a layer and to satisfy free‐surface boundary conditions. Benchmark comparisons of finite‐difference and analytical solutions to Lamb’s problem are almost identical, as are comparisons of finite‐difference and reflectivity solutions for elastic‐elastic and acoustic‐elastic layered models.


Author(s):  
M. D. Yang ◽  
B. Teng

A time-domain simulation method is developed for the coupled dynamic analysis of a spar platform with mooring lines. For the hydrodynamic loads, a time domain second order method is developed. In this approach, Taylor series expansions are applied to the body surface boundary condition and the free surface boundary condition, and Stokes perturbation procedure is then used to establish corresponding boundary value problems with time-independent boundaries. A higher order boundary element method is developed to calculate the velocity potential of the resulting flow field at each time step. The free-surface boundary condition is satisfied to the second order by 4th order Adams-Bashforth-Moultn method. An artificial damping layer is adopted on the free surface to avoid the wave reflection. For the mooring-line dynamics, a geometrically nonlinear finite element method using isoparametric cable element based on the total Lagrangian formulation is developed. In the coupled dynamic analysis, the motion equation for the hull and dynamic equations for mooring lines are solved simultaneously using Newmark method. Numerical results including motions and tensions in the mooring lines are presented.


Sign in / Sign up

Export Citation Format

Share Document