The earthquake P phases which penetrate the earth's core

1967 ◽  
Vol 57 (5) ◽  
pp. 875-890
Author(s):  
D. H. Shurbet

abstract Travel times of all earthquake phases which enter the core as P and emerge as P are explained in terms of a core model containing two velocity discontinuities. Amplitudes of PKIKP and PKP change little with changes in distance from the source except in the rangeΔ = 142° to Δ = 152°. In this range large amplitubes are observed which result from the simultaneous arrival of two phases as well as large amplitudes which represent the PKP1 - PKP2 caustic. Amplitudes in the caustic allow detection of events perhaps smaller than magnitude 4. In all distance ranges PKIKP and PKP are useful in magnitude determination, but added care must be taken if they are used in the distance range where amplitudes are large. Magnitudes determined from PKIKP and PKP are very consistent as are focal depths. The PKJKP phase is small if present at all.

1958 ◽  
Vol 48 (4) ◽  
pp. 301-314
Author(s):  
B. Gutenberg

Abstract More than 700 seismograms of 39 shocks recorded mainly in southern California at epicentral distances between 105 and 140 degrees are used to investigate records of phases which have penetrated the earth's core. Properties of PKIKP, SKP, SKIKP, PKS, and PKIKS are discussed. Portions of travel-time curves of these phases are revised. Travel times of waves starting and ending at the surface of the core, and wave velocities in the core, are recalculated. Between about 1,500 and 1,200 km. from the earth's center in the transition zone from the liquid outer to the probably solid inner core, waves having lengths of the order of 10 km. travel faster than longer waves. This is probably caused by a rather rapid increase in viscosity toward the earth's center in this transition zone.


1964 ◽  
Vol 54 (1) ◽  
pp. 191-208
Author(s):  
Bruce A. Bolt

abstract A double velocity jump in the Earth's core entails a PKP travel-time curve with two lengthy branches extending back from 143°. The later branch is associated with the PKIKP phase. The earlier branch arises from waves, here designated PKHKP, which are refracted through the intermediate shell. Theoretical travel-time curves for PKP and SKS in possible Earth models with tripartite cores are presented. It is shown that the PKHKP branch provides an explanation for precursors to PKIKP observed at epicentral distances between 123° and 140°. Observations of waves predicted by the portion of this branch from 148° to 156° have been also reported. The SKS curve is examined in the light of some 550 SKS observations in the range 85° < Δ < 145°. The study provides evidence that there is in the core a discrete shell with thickness of order 420 kms and with a mean P velocity near 10.31 km/sec. This shell surrounds the inner core having mean radius 1220 kms and mean P velocity 11.22 km/sec, approximately. The material of the intermediate shell is not likely to have marked rigidity. The inner core is likely to be solid; published times for PKJKP waves may be, however, too small by several minutes.


1980 ◽  
Vol 3 (3) ◽  
pp. 591-598
Author(s):  
Sukhendu Dey ◽  
Sushil Kumar Addy

In the present paper the influence of the initial stress is shown on the reflection and transmission ofPwaves at the core-mantle boundary. Taking a particular value of the inherent initial stress, the variations of reflection and transmission coefficients with respect to the angle of emergence are represented by graphs. These graphs when compared with those having no initial stress show that the effect of the initial stress is to produce a reflectedPandSwaves with numerically higher amplitudes but a transmittedPwave with smaller amplitude. A method is also indicated in this paper to calculate the actual value of the initial stress near the core-mantle boundary by measuring the amplitudes of incident and reflectedPwaves.


1980 ◽  
Vol 17 (1) ◽  
pp. 72-89 ◽  
Author(s):  
H. H. Schloessin ◽  
J. A. Jacobs

In both physical and mathematical models of the Earth's core it has been difficult, so far, to discuss all the terms in the magneto-hydrodynamic energy equation under one unifying theory and to relate all the physical mechanisms involved in a specific model. The reason for this is mainly the uncertainty about the energy sources, or, when they could be accounted for, with uncertainty about their location. In the following article we deduce and examine a model of the Earth's core which can be regarded as a sequel to theories of the formation of a fluid core in the course of the Earth's thermal evolution.General cooling and pressure-freezing cause the formation of solid phases at the boundaries of the fluid core, leading to a solid inner core (IC) and a lower mantle shell (Bullen's D″ layer) from slow overgrowth at the mantle–core (MC) boundary. For simplicity, the core fluid is assumed to consist of two major phases, one conducive to solid metallic core formation, and the other to crystallization of a lower mantle phase from "solution" in a metal "solvent." The presence of a third, minor constituent, by selective partitioning between phases, acts as a solid phase growth regulator.On the basis of this model the energy available for fluid core motion and thereby for maintenance of the magnetic field, is related directly to the time rate of change of the growth of the solid phases at the IC and MC boundaries. Most of the available energy is gravitational and is associated with density and concentration currents which offset density inhomogeneities caused by selective acceptance and rejection of the fluid core constituents by the two solid phases.A very conservative estimate of the net gain per second in gravitational potential energy resulting from the mass redistribution via density currents and solid phase formation is 2.6 × 1013 W which may become available in different forms. The fraction which is converted into kinetic energy associated with differential circulatory motion around the rotation axis amounts to 3.4 × 1011 W, based on radial interchange with respect to the Earth's centre. The heat liberated as a result of IC solidification is 2.7 × 1011 W, assuming that the metallic phase is mainly iron. Since our ideas of other constituents of the core fluid are less definite we can draw only very general conclusions about the MC boundary. If silicates and oxides are likely candidates, it is possible that in the crystallization of the mantle phase from the core fluid, heat is being absorbed, thus creating a heat sink at the MC boundary. An estimate of the net strain energy associated with compression of IC material by about 1.4% and expansion of MC material by, on the average, 0.4% gives 1.5 × 1011 W.Magnetic polarity reversals might be explained as due to epochs during which the solid phase growth rate which dominates the fluid motion shifts from the IC to the MC boundary and vice versa. Intensity changes might be due to significant variations in the ratio of the radial and horizontal velocity components of the fluid motion.


Author(s):  
Nagayoshi Sata ◽  
Kei Hirose ◽  
Guoyin Shen ◽  
Yoichi Nakajima ◽  
Yasuo Ohishi ◽  
...  

2017 ◽  
Vol 210 (3) ◽  
pp. 1503-1516 ◽  
Author(s):  
N. Gillet ◽  
D. Jault ◽  
E. Canet

Sign in / Sign up

Export Citation Format

Share Document