time curve
Recently Published Documents


TOTAL DOCUMENTS

2342
(FIVE YEARS 485)

H-INDEX

101
(FIVE YEARS 9)

Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 96
Author(s):  
Takashi Ueda ◽  
Yoshio Takesue ◽  
Kazuhiko Nakajima ◽  
Kaoru Ichiki ◽  
Kaori Ishikawa ◽  
...  

Area under the concentration–time curve (AUC)-guided vancomycin treatment is associated with decreased nephrotoxicity. It is preferable to obtain two samples to estimate the AUC. This study examined the usefulness of AUC estimation via trough concentration (Cmin)-only sampling of 260 adults infected with methicillin-resistant Staphylococcus aureus (MRSA) who received vancomycin. The exact Cmin sampling time was used for Bayesian estimation. A significantly higher early treatment response was observed in patients with a day 2 AUC ≥ 400 µg·h/mL than those with <400 µg·h/mL, and a significantly higher early nephrotoxicity rate was observed in patients with a day 2 AUC ≥ 600 µg·h/mL than those with <600 µg·h/mL. These AUC cutoff values constituted independent factors for each outcome. In sub-analysis, the discrimination ability for early clinical outcomes using these AUC cutoffs was confirmed only in patients with q12 vancomycin administration. A significant difference in early treatment response using the 400 µg·h/mL cutoff was obtained only in patients with low-risk infections. The usefulness of the vancomycin AUC target to decrease nephrotoxicity while assuring clinical efficacy was even confirmed with a single Cmin measurement. However, assessment with two samples might be required in patients with q24 administration or high/moderate-risk MRSA infections.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Fei Tan ◽  
Jin Xu

The measurement of thermodynamic properties of chemical or biological reactions were often confined to experimental means, which produced overall measurements of properties being investigated, but were usually susceptible to pitfalls of being too general. Among the thermodynamic properties that are of interest, reaction rates hold the greatest significance, as they play a critical role in reaction processes where speed is of essence, especially when fast association may enhance binding affinity of reaction molecules. Association reactions with high affinities often involve the formation of a intermediate state, which can be demonstrated by a hyperbolic reaction curve, but whose low abundance in reaction mixture often preclude the possibility of experimental measurement. Therefore, we resorted to computational methods using predefined reaction models that model the intermediate state as the reaction progresses. Here, we present a novel method called AKPE (ANN-Dependent Kinetic Parameter Extraction), our goal is to investigate the association/dissociation rate constants and the concentration dynamics of lowly-populated states (intermediate states) in the reaction landscape. To reach our goal, we simulated the chemical or biological reactions as system of differential equations, employed artificial neural networks (ANN) to model experimentally measured data, and utilized Particle Swarm Optimization (PSO) algorithm to obtain the globally optimum parameters in both the simulation and data fitting. In the Results section, we have successfully modeled a protein association reaction using AKPE, obtained the kinetic rate constants of the reaction, and constructed a full concentration versus reaction time curve of the intermediate state during the reaction. Furthermore, judging from the various validation methods that the method proposed in this paper has strong robustness and accuracy.


Author(s):  
Simon E Koele ◽  
Stijn W van Beek ◽  
Gary Maartens ◽  
James C. M. Brust ◽  
Elin M Svensson

Interruption of treatment is common in drug-resistant tuberculosis patients. Bedaquiline has a long terminal half-life therefore, restarting after an interruption without a loading dose could increase the risk of suboptimal treatment outcome and resistance development. We aimed to identify the most suitable loading dose strategies for bedaquiline restart after an interruption. A model-based simulation study was performed. Pharmacokinetic profiles of bedaquiline and its metabolite M2 (associated with QT-prolongation) were simulated for 5000 virtual patients for different durations and starting points of treatment interruption. Weekly bedaquiline area under the concentration-time curve (AUC) and M2 maximum concentration (Cmax) deviation before interruption and after reloading were assessed to evaluate the efficacy and safety respectively of the reloading strategies. Bedaquiline weekly AUC and M2 Cmax deviation were mainly driven by the duration of interruption and only marginally by the starting point of interruption. For interruptions with a duration shorter than two weeks, no new loading dose is needed. For interruptions with durations between two weeks and one month, one month and one year, and longer than one year, reloading periods of three days, one week, and two weeks, respectively, are recommended. This reloading strategy results in an average bedaquiline AUC deviation of 1.88% to 5.98% compared with -16.4% to -59.8% without reloading for interruptions of two weeks and one year respectively, without increasing M2 Cmax. This study presents easy-to-implement reloading strategies for restarting a patient on bedaquiline treatment after an interruption.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 32
Author(s):  
Ali Raza ◽  
Hua Wang

This paper presents a two-phase guidance and control algorithm to extend the range and improve the impact point accuracy of a 122-mm rocket using a fixed canards trajectory correction fuze. The guidance algorithm consists of a unique glide and correction phase of the rocket trajectory that is activated after the flight’s apex. The glide phase operates in an open-loop configuration where guidance commands are generated to increase the range of the rocket. In contrast, the correction phase operates in a closed-loop configuration where the Impact Point Prediction method based on Modified Projectile Linear Theory is used as a feedback channel to correct the range and drift errors. The proposed fixed canards trajectory correction fuze has a simple and reliable single channel roll-orientation control configuration. The rocket trajectory model consists of a 7-DOF non-linear dynamic model of a dual-spin rocket configuration with a fixed canards correction fuze mounted at the nose. A Monte Carlo simulation of the rocket’s inertial and launch point perturbations show that the fixed canards fuze with the proposed guidance algorithm can double the range of the rocket without changing the rocket motor thrust-time curve. At the same time, the rocket’s accuracy can also be improved beyond the results of an unguided rocket.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Takuma Yonemura ◽  
Rie Yazawa ◽  
Miwa Haranaka ◽  
Kazuki Kawakami ◽  
Masayuki Takanuma ◽  
...  

Abstract Background FKB327 has been developed as a biosimilar of the adalimumab reference product (RP). We compared the pharmacokinetics (PK), safety, and immunogenicity of FKB327 with those of the adalimumab RP after a single dose by subcutaneous (SC) injection in Japanese male participants. Methods Two randomized, single-blind, single-dose studies were conducted in healthy Japanese male participants to compare PK characteristics between FKB327 and the RP. Study 1 included 130 participants who were randomized in a 1:1 ratio to receive a subcutaneous injection of 40 mg of either FKB327 or the RP into the abdomen. In Study 2, another 130 subjects were randomized in a 1:1 ratio to receive either drug as in Study 1, but the drug administration site was changed to the thigh. The primary PK endpoints of both studies were area under the concentration-time curve from time zero to the last measurable concentration (AUC0-t) and maximum serum concentration; area under the concentration-time curve from time zero to 360 h was also evaluated as one of the primary endpoints in Study 1. Biosimilarity in terms of pharmacokinetics was determined if the 90% confidence interval of the mean difference in geometric mean ratio of all primary PK parameters was within the prespecified equivalence criteria (0.80–1.25). Immunogenicity and safety were also evaluated as secondary endpoints. Results The serum concentration-time profiles were comparable between the FKB327 and the RP treatment groups in both studies. Primary PK parameters were within the prespecified bioequivalence range in Study 2, although AUC0-t was slightly outside the upper side of the range in Study 1. No differences in safety profile were observed in these studies. The incidence of anti-drug antibodies (ADAs) and impact of ADAs on PK profile were similar among the treatment groups in both studies. Conclusion Biosimilarity between FKB327 and the RP after a single 40-mg SC injection was confirmed in healthy Japanese male participants by modifying the study design. Trial registration jRCT2071200058 (https://jrct.niph.go.jp/en-latest-detail/jRCT2071200058, https://rctportal.niph.go.jp/en/detail?trial_id=jRCT2071200058) and jRCT2071200057 (https://jrct.niph.go.jp/en-latest-detail/jRCT2071200057, https://rctportal.niph.go.jp/en/detail?trial_id=jRCT2071200057). Retrospectively registered 25/11/2020.


Author(s):  
Zoe Oesterreicher ◽  
Sabine Eberl ◽  
Beatrix Wulkersdorfer ◽  
Peter Matzneller ◽  
Claudia Eder ◽  
...  

Abstract Background and Objective In microdose studies, drug pharmacokinetics is measured in humans after administration of subtherapeutic doses. While previous microdose studies focused primarily on plasma pharmacokinetics, we set out to evaluate the feasibility of microdosing for a pharmacokinetic assessment in subcutaneous tissue and epithelial lining fluid. Methods Healthy subjects received a single intravenous bolus injection of a microdose of [14C]ciprofloxacin (1.1 µg, 7 kBq) with (cohort A, n = 9) or without (cohort B, n = 9) a prior intravenous infusion of a therapeutic dose of unlabeled ciprofloxacin (400 mg). Microdialysis and bronchoalveolar lavage were applied for determination of subcutaneous and intrapulmonary drug concentrations. Microdose [14C]ciprofloxacin was quantified by accelerator mass spectrometry and therapeutic-dose ciprofloxacin by liquid chromatography–tandem mass spectrometry. Results The pharmacokinetics of therapeutic-dose ciprofloxacin (cohort A) in plasma, subcutaneous tissue, and epithelial lining fluid was in accordance with previous data. In plasma and subcutaneous tissue, the dose-adjusted area under the concentration–time curve of microdose ciprofloxacin was similar in cohorts A and B and within an 0.8-fold to 1.1-fold range of the area under the concentration–time curve of therapeutic-dose ciprofloxacin. Penetration of microdose ciprofloxacin into subcutaneous tissue was similar in cohorts A and B and comparable to that of therapeutic-dose ciprofloxacin with subcutaneous tissue-to-plasma area under the concentration–time curve ratios of 0.44, 0.44, and 0.38, respectively. Penetration of microdose ciprofloxacin into epithelial lining fluid was highly variable and failed to predict the epithelial lining fluid penetration of therapeutic-dose ciprofloxacin. Conclusions Our study confirms the feasibility of microdosing for pharmacokinetic measurements in plasma and subcutaneous tissue. Microdosing combined with microdialysis is a potentially useful tool in clinical antimicrobial drug development, but its applicability for the assessment of pulmonary pharmacokinetics with bronchoalveolar lavage requires further studies. Clinical Trial Registration ClinicalTrials.gov NCT03177720 (registered 6 June, 2017).


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 429-436
Author(s):  
Tianle Gong ◽  
Jieda Chen ◽  
Pengjin Fang ◽  
Lin Liu ◽  
Chengyuan Li ◽  
...  

In this paper, the change of nanotubes and the current–time curve under different temperature are explained clearly. Also, ginseng shaped nanotubes were found in experiments, which proved the irrationality of field assisted dissolution theory.


2022 ◽  
Author(s):  
Pengze Li ◽  
Heng Wang ◽  
Yilin Ni ◽  
Ye Song ◽  
Ming Sun ◽  
...  

The application and growth mechanism of anodic TiO2 nanotubes have been a hot topic in recent ten years, but the formation mechanism of anodic ZrO2 nanotubes is rarely studied. In...


2021 ◽  
Vol 12 ◽  
Author(s):  
Lijuan Zhao ◽  
Lingyu Han ◽  
Xiaolu Wei ◽  
Yanyan Zhou ◽  
Yanqiong Zhang ◽  
...  

Arenobufagin (ArBu), one of the main active bufadienolides of toad venom with cardiotonic effect, analgesic effect, and outstanding anti-tumor potentiality, is also a potential cardiotoxic component. In the present study, the cardiac effect of ArBu and its underlying mechanism were explored by integrating data such as heart rates, toxicokinetics, myocardial enzyme and brain natriuretic peptide (BNP) activity, pathological sections, lipidomics and proteomics. Under different doses, the cardiac effects turned out to be different. The oral dose of 60 mg/kg of ArBu sped up the heart rate. However, 120 mg/kg ArBu mainly reduced the heart rate. Over time, they all returned to normal, consisting of the trend of ArBu concentration-time curve. High concentrations of myocardial enzymes and BNP indicated that ArBu inhibited or impaired the cardiac function of rats. Pathological sections of hearts also showed that ArBu caused myocardial fiber disorder and rupture, in which the high-dose group was more serious. At the same time, serum and heart tissue lipidomics were used to explore the changes in body lipid metabolism under different doses. The data indicated a larger difference in the high-dose ArBu group. There were likewise many significant differences in the proteomics of the heart. Furthermore, a multi-layered network was used to integrate the above information to explore the potential mechanism. Finally, 4 proteins that were shown to be significantly and differentially expressed were validated by targeted proteomics using parallel reaction monitoring (PRM) analysis. Our findings indicated that ArBu behaved as a bidirectional regulation of the heart. The potential mechanism of cardiac action was revealed with the increased dose, which provided a useful reference for the safety of clinical application of ArBu.


Sign in / Sign up

Export Citation Format

Share Document