Experimental Verification of Finite Element Computer Modeling of Distal Radius Locking Bridge Plate for Treatment of Distal Radius Fracture

2021 ◽  
Author(s):  
Spencer Honadel
Hand ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. 336-340 ◽  
Author(s):  
Jerry I. Huang ◽  
Bret Peterson ◽  
Kate Bellevue ◽  
Nicolas Lee ◽  
Sean Smith ◽  
...  

Background: The goal of this study was to compare the biomechanical stability of a 2.4-mm dorsal spanning bridge plate with a volar locking plate (VLP) in a distal radius fracture model, during simulated crutch weight-bearing. Methods: Five paired cadaveric forearms were tested. A 1-cm dorsal wedge osteotomy was created to simulate an unstable distal radius fracture with dorsal comminution. Fractures were fixed with a VLP or a dorsal bridge plate (DBP). Specimens were mounted to a crutch handle, and optical motion-tracking sensors were attached to the proximal and distal segments. Specimens were loaded in compression at 1 mm/s on a servohydraulic test frame until failure, defined as 2 mm of gap site displacement. Results: The VLP construct was significantly more stable to axial load in a crutch weight-bearing model compared with the DBP plate (VLP: 493 N vs DBP: 332 N). Stiffness was higher in the VLP constructs, but this was not statistically significant (VLP: 51.4 N/mm vs DBP: 32.4 N/mm). With the crutch weight-bearing model, DBP failed consistently with wrist flexion and plate bending, whereas VLP failed with axial compression at the fracture site and dorsal collapse. Conclusions: Dorsal spanning bridge plating is effective as an internal spanning fixator in treating highly comminuted intra-articular distal radius fracture and prevents axial collapse at the radiocarpal joint. However, bridge plating may not offer advantages in early weight-bearing or transfer in polytrauma patients, with less axial stability in our crutch weight-bearing model compared with volar plating. A stiffer 3.5-mm DBP or use of a DBP construct without the central holes may be considered for distal radius fractures if the goal is early crutch weight-bearing through the injured extremity.


2015 ◽  
Vol 40 (3) ◽  
pp. 500-504 ◽  
Author(s):  
Sarah Lewis ◽  
Amir Mostofi ◽  
Milan Stevanovic ◽  
Alidad Ghiassi

2020 ◽  
Vol 9 (06) ◽  
pp. 475-480
Author(s):  
Asif M. Ilyas ◽  
Gerald M. Hayward ◽  
Jonathan A. Harris ◽  
Wenhai Wang ◽  
Brandon S. Bucklen

Abstract Background Bridge plating for distal radius fractures is indicated for complex fractures with comminution, extensive articular involvement, and/or cases requiring immediate weight bearing. Bridge plate fixation of distal radius fractures is a well-documented treatment method; however, failures have been reported with repetitive loading through the bridged distal radius fracture. Plate design is implicated as a cause of plate fracture in select clinical studies but few mechanical tests comparing bridge plate designs have been reported. This study sought to determine the impact of plate design on bridge plates intended to allow for immediate weight-bearing. Methods Axial static (n = 3) and dynamic testing (n = 3) was performed on three distraction plates designs: bridge plate 1 (BP1) with central holes, bridge plate 2 (BP2) without central holes, and locking compression plate (BP3). Plates were loaded in axial compression with a simulated 10-mm fracture gap. Results Significant static load differences were noted between all groups. Static load to failure for BP1, BP3, and BP2 were 240 ± 5 N, 398 ± 9 N, and 420 ± 3 N, respectively (p < 0.05). BP1 was the only plate series that failed during dynamic testing; all other plates achieved 100,000 cycles. Failure mode was a fracture occurring through the central screw hole of BP1. Finite element analysis demonstrated the effects of central screw holes on stress, strain, and plastic deformation under loading. Conclusion Unused screw holes are the mechanical weak points; plates designed without these central screw holes are expected to survive greater load values. The threshold for clinical importance will need to be determined by future studies.


Sign in / Sign up

Export Citation Format

Share Document