scholarly journals Asymptotic Behaviors of Wronskians and Finite Asymptotic Expansions in the Real Domain - Part I: Scales of Regularly- or Rapidly-Varying Functions

Author(s):  
Antonio Granata

In a previous series of papers we established a general theory of finite asymptotic expansions in the real domain for functions f of one real variable sufficiently-regular on a deleted neighborhood of a point x0 ∈ R, a theory based on the use of a uniquely-determined linear differential operator L associated to the given asymptotic scale and wherein various sets of asymptotic expansions are characterized by the convergence of improper integrals involving both the operator L applied to f and certain weight functions constructed by means of Wronskians of the given scale. Very special cases apart, Wronskians have quite complicated expressions and unrecognizable asymptotic behaviors; however in the present work, split in two parts, we highlight some approaches for determining the exact asymptotic behavior of a Wronskian when the involved functions are regularly- or rapidly-varying functions of higher order. This first part contains: (i) some preliminary results on the asymptotic behavior of a determinant whose entries are asymptotically equivalent to the entries of a Vandermonde determinant; (ii) the fundamental results about the asymptotic behaviors of Wronskians involving scales of functions all of which are either regularly (or, more generally, smoothly) varying or rapidly varying of a suitable higher order. A lot of examples and applications to the theory of asymptotic expansions in the real domain are given.

Author(s):  
Antonio Granata

In this second Part of our work we study the asymptotic behaviors of Wronskians involving both regularly- and rapidly-varying functions, Wronskians of slowly-varying functions and other special cases. The results are then applied to the theory of asymptotic expansions in the real domain.


2021 ◽  
Vol 6 (12) ◽  
pp. 13291-13310
Author(s):  
Humaira Kalsoom ◽  
◽  
Muhammad Amer Latif ◽  
Muhammad Idrees ◽  
Muhammad Arif ◽  
...  

<abstract><p>In accordance with the quantum calculus, the quantum Hermite-Hadamard type inequalities shown in recent findings provide improvements to quantum Hermite-Hadamard type inequalities. We acquire a new $ q{_{\kappa_1}} $-integral and $ q{^{\kappa_2}} $-integral identities, then employing these identities, we establish new quantum Hermite-Hadamard $ q{_{\kappa_1}} $-integral and $ q{^{\kappa_2}} $-integral type inequalities through generalized higher-order strongly preinvex and quasi-preinvex functions. The claim of our study has been graphically supported, and some special cases are provided as well. Finally, we present a comprehensive application of the newly obtained key results. Our outcomes from these new generalizations can be applied to evaluate several mathematical problems relating to applications in the real world. These new results are significant for improving integrated symmetrical function approximations or functions of some symmetry degree.</p></abstract>


Author(s):  
José L. López ◽  
Nico M. Temme

Convergent expansions are derived for three types of orthogonal polynomials: Charlier, Laguerre and Jacobi. The expansions have asymptotic properties for large values of the degree. The expansions are given in terms of functions that are special cases of the given polynomials. The method is based on expanding integrals in one or two points of the complex plane, these points being saddle points of the phase functions of the integrands.


Sign in / Sign up

Export Citation Format

Share Document